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ABSTRACT: A method with two harmonic functions is proposed for solving transversely isotropic
axisymmetric problems by applying the theorems of Refs. [1] and [S]. A series of simple formulas of
the boundary least square collocation method is derived. Two engineering examples show that the
present method is much more convenient than Lekhniskii’s with bibarmonic functions. Some useful

conclusions are finally obtained.
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I. INTRODUCTION

‘The analyses of transversely isotropic axisymmetric problems in engineering have been the
subject of many experts'> .. As early as the 1950s, Hu Haichang and Lekhniskii solved some
typical problems with biharmonic functions'*l. ‘

In the present paper, a method with two harmonic- functions is proposed for solving
axisymmetric problems by applying the theorems of Refs. [1] and [5]. This method is convenient
to find analytical solutions because thorough analyses of harmonic functions have been made.
Moreover, it is also very suitable for the applieations of MWR since a series of simple formulas can
be derived. The paper analyzes two engineering examples with the boundary least square

collocation method and gets very good results and advances some opinions on the point-load tests.

II. DERIVATION OF EQUATIONS
It is convenient to use the cylindrieal coordinates (r,z) for the analyses of transversely
isotropic axisymmetric elastic bodies. The general solutions of the title problem can be easily
obtained from the theory of Ref. [2]:
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where
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Fig.l A multiply connected region

The corresponding expressions of stresses can then be derived from equation (1). For a simply

connected region, Equ.(2) has solutions of form

ofrsp) = 3 olbalnsg)  G=12) @

but for a multiply connected region as shown in Fig.1, the following additional functions should be
superposed

oirsp) = 3. HLbursplor + Qes)). (=12 ®)

where @/ and A} are undetermined coefficients, and Q, and ¢, are homogeneous and homogeneous
harmenic polynomials of the nth order, respectively. For the sake of convenience and definiteness,

the following notations are adopted:
¢u = §,(r,2), ¢{| = d),.(f,SjZ), Qn = Q,,(r,z), Q: = Q,,(f,SJZ).
The following recurrence formulas are used
2
= zd,_, '—;wn—l’ $o=1
Ya=ndy_ 1+ Y-y, Yo=0
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2
nn=n0n—l+mn—l_m¢m n0=0

and



Vol. 3, No. 3

Zhang & Ding: MWR for Transversely Isotropic Problems 263
(e R, TR,
9;_% =Yp_1 — n(n— )b, a;g, =n(n — Déu-,
By Becno, )
O e e+ Wy — i~ 10,
3Q,

72 - n(n - 1)Q,-,

With the help of Eqs.(6) and (7), the components of stresses and displacements can be

expressed as
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where uf;, iy, and so on are the functions of ¢, Y7, @/, and . The approximate representations of
stresses and displacements are obtained by truncating Equ.(8) and can be determined once the
coefficients @/ and A} are solved from the linear equations of residuals

Imzargmds =90,

where R is the vector of boundary residuals and can be calculated with the aid of proper

boundary conditions of region 2, and W, is a weight matrix'®l.

M. THE CALCULATIONS AND ANALYSES OF ENGINEERING EXAMPLES
Many significant problems have been analyzed by the above formulas, but only two of them
will be given in this paper to illustrate the characters and advantages of the present method. The
boundary least square collocation ‘method is employed and the relation
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Fig.2 A magnesium cylinder
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is used throughout the calculations.

Example 1. A magnesium finite cylinder with transverse isotropy is subjected to a seif-
equilibrium end stresses prescribed as

z=4h 0;,=1-27 1,=0

The elastic coefficients of the material are taken from Ref. [3]. The end problems of the circular
cylinders have been the focus of much research attention over many decades and have widely been
investigated!> 7. Generally, the methods of eigenfunctions or Fourier series are employed. In order
to obtain results with good accuracy, a large number of terms of the corresponding series should
-usually be taken, because of the slow convergence. In 1978, Vendhan and Archer calculated
magnesium cylinders with fifty-three terms of the eigenfunction expansion'®]. In this paper, we
take twenty-two and twenty terms of Eq.(8) for the cylinders of A/R = 0.05 and /R = 0.2,

respectively. The results of o, and o, on section z =0 are listed in Table 1.

Table 1

Stresses on the section z = 0 of the magnesium cylinder

r/R 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
h/R

o,] =0.05]00088 0.0978 0.0947 0.0897 0.0826 0.0735 00623 00492 00340 0.0169  0.0000
k/R
=0.20] 0.0666 0.0657 0.0627 0.0576 0.0505 0.0417 0.0316 0.0214 0.0135 0.0063  0.0000
/R

g, =0.05]0.0988 0.0957 00866 0.0715 00502 0.0229 —.0105 —.0500 —.0955 —.1491 —.2033
h/R

=0.20]0.0666 0.0636 0.0545 0.0393 00181 -.0092 —.0424 —.0.810 —-.1238 —.1669 —.2100

The comparison of 4 (for 4 /r = 0.05) from Table 1 with the Vendhan’s results has been shown in
Fig.3. The curves show that the present results are in good agreement with Vendhan’s, but the
present method is more labour-saving and more forthright on the procedure of calculation.

Example 2. The axisymmetric ellipsoidal point-load rock specimen, as shown in Fig.4, is a
typical one in the point-load tests, which are used to determine the strength of rock which has
lower strength or has severely been weathered so that normal tests become powerless.
Unfortunately, up to now, either in theoretical studies or in experimental investigations the rock
specimen has been considered as isotropic'®. In order to simulate the properties of the materials
more exactly, we adopt the model of transverse isotropy for the first time. The elastic coefficients
are taken as: £, = 1.0 x 10°%kg/cm?,v, = 0.3 and v,, = 0.25, and three different values of E,,
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Fig.3 Comparison of 6, on section z =0 Fig4 An ellipsoidal rock specimen

for point-load test

are taken: a) E;, = 1.40 x 10°kg/cm?% b) E;; = 1.45 x 10°kg/cm? and ¢) E;; =150
x 10°kg / cm? in order to investigate the variation of stresses of the specimen with different elastic
coefficients. The dimensions of the specimen are OA = 2.63 cm and OB = 2.0cm. Here we take
eighteen terms of Equ.(8) as the trial function. Tables 2 and 3 list the stresses of the above three

cases.
Table 2

Stresses (kg/cm?) on the loading axis of the ellipsoidal specimen

E, 1\\ o, oz

z(cm) a b c a b ¢

0.0 0.6836 0.6646 0.6457 —3.3115 —3.3105 —3.3104
0.2 0.6889 0.6700 0.6511 ~3.3820 —3.3808 —3.3805
0.4 0.7027 0.6835 0.6642 —3.5987 -3.5968 —3.5960
0.6 0.7195 0.6993 0.6791 —3.9808 —3.9779 —3.9760
08 0.7326 0.7106 0.6885 —4.5693 —4.5648 —4.5616
10 0.7339 0.7084 0.6827 —5.4407 —~5.4341 —5.4291
1.2 0.7181 0.6854 0.6524 —-6.7411 ~6.7307 —-6.7223
14 0.7000 -0.6549 0.6122 —8.7597 —8.7424 -8.7279
1.6 0.6630 0.5996 0.5353 ~-12.0715 —12.0430 -12.0185
18 0.5777 0.4842 0.3899 ~17.8600- —17.8090 —17.7640
20 0.1534 0.0046 —0.1458 —.—28.7373 —28.6279 —28.5288
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Table 3

Stresses (kg/cm?) on the section z =0 of the ellipsoidal specimen

ricm) a b c a b c a b c
0.0 06836 06646 0.6457|0.6836 0.6646 0.6457 | —33115 —3.3105 —3.3104
0.2 06619 06432 06247/ 06876 0.6694 0.6514 | —3.2505 —3.2492 —3.2489
04 05999 05822 0.5646|0.6985 0.6826 0.6668 | —30752 —3.0733 —3.0723
0.6 05059 04897 04736]|0.7132 07007 0.6883 | —3.8068 —2.8043 —2.8026
08 0389 03752 03609(0.7275 07188 07104 | —24741 —24713 —2.4601
1.0 02579 0.2453 0.2326]0.7359 0.7312 07267 | —21068 —2.104&2 —2.1021
1.2 0.1078 00964 00850|0.7314 07302 0.7292 | —1.7306 —1.7202 —1.7278
14 —-00191 —0.0297 —00386/0.7010 07024 07041 | —13671 —13675 —1.3677
16 ~0062 —00708 —00731|0.6073 06103 06136 | —10705 ~1.0740 —LO771
18 | —00293 00315 —0.0324|05400 05457 05537 | —0.9479 —0.9566 —0.9895
20 0.0000 00000 00000 |0.4757 04869 04983 | —0.8671 —0.8893 —0.9017

IV. CONCLUSIONS
The following conclusions can be obtained from above analyses and discussions:
By the use of Equs.(7) and (8), we can make the boundary least square collocation method for
solving the transversely isotropic axisymmetric problems as simple as the corresponding
isotropic ‘ones. The present method is much more forthright than Lekhnitskii’s with
biharmonic fanctions.
The present method can provide approximate analytical solutions. It is therefore more
convenient for determining the locations of the characteristic points of stresses, such as
extreme value points, zero points and so on. These special points are very useful for
understanding the stress distributions in the specimen.
This paper considers for the first time the point-load rock specimen as a transversely
isotropic one, thus several valuable results which cannot be gotten by the use of isotropic
model are obtained. Tables 2 and 3 show clearly that the variation of the elastic modulus,
E,,, has great effect on the stress components 6, and g,. The radial stress g, increases
significantly with the decreasing of E,,, and the zero point of o, on loading ‘axis moves
definitely. These are indeed the important factors which severely affect the accuracy of point-
load tests'®). Figs.5 and 6 show the distributions of the radial stress o, on the loading axis and’
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Fig.5 The radial stress on the loading axis Fig.6 The circumferential stress on section z = 0

the circumferential stress 6 on the section z = 0, respectively. Finally, it should be pointed
out that the larger is the ratio of E,, / E, the smaller the linliting break load of a specimen
becomes. if the loading axis is chosen to be perpendicular to the isotropic plane of the
material. Therefore, in order to get reliable data, the orientation of the isotropic plane of an’
irregular specimen'®) should be considered.
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