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A ] ~ r R A ~ v r  g �9 . , . A method ruth two harmomc functmns m proposed for sol~ag transversely isotropic 

axhymmetric problems by applying the theorems of Refs. [1] and [5]. A series of simple formulas of 

the boundary least square collocation method is derived. Two engineering examples show that the 

present method is much more convenient than Leldmiskii's with biharmonic functions. Some useful 

conclusions are finally obtained. 
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L INTRODUCTION 

~The analyses of transversely isotropic+axisymmetric problems in engineering have been the 

subject of many experts t2- 51. As early as the  1950s, Hu Haiehang and Lekhniskii solved some 

typical problems with biharmonie functions t+l. 

In the present paper, a method with two harmonic functions is proposed for solving 

axisymmetric problems by applying the theorems of Refs. ['1] and i"5]. This method is convenient 

to find analytical solutions because thorough analyses of harmonic functions have been made. 

Moreover, it is also very suitable for the applimtions of MWR since a series of simple formulas can 

be derived. The paper analyzes two engin~ring examples with the boundary least square 

collocation method and gets very good results and advances some opinions on the point-load tests. 

H. DERIVATION OF EQUATIONS 
It is convenient to use the cylindrieal coordinates (r,z) for the analyses of transversely 

isotropic axisymmetric elastic bodies. The general solutions of the title problem can be easily 

obtained from the theory of Ref. [2]: 
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where 

-~l,2=[~2-{-Ot~--1__.N/(~'2-{-O~-- 1)2--40t~'2]/(2~) 

a = B x l / B I 3  [3 = B 3 3 / B t 3  ~ = B , t 4 / B t 3  
(3) 
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i 

Fig.1 A multiply connected region 

The corresponding expressions of stresses can then be derived from equation (1). For a simply 

connected region, Equ.(2) has solutions of form 

~o~(r,~) = ~ ~'t,,,(r,~) (y = 1,2) (4) 
nffil 

but for a multiply connected region as shown in Fig.l, the following additional functions should be 

superposed 

~pj(r,syz) = ~ .  ~ [ dps(r,syz)lnr + Q, ( r , s f ) ] ,  (j = 1,2) (5) 
n = l  

where o~ and A~ are undetermined coefficients, and Q. and ~b. are homogeneous and homogeneous 

harmonic polynomials of the nth order, respectively. For the sake of convenience and def'miteness, 

the following notations are adopted: 

dp. = dp.(r.z), d~. = 6.(r.sjz).  Q. = Q.(r.z). Q~ = Qn(r.syz ). 

The following recurrence formulas are used 

~. = z r  ~-~._, ,  6 o = 1  
/% 

ql. = n~._, + zqJ._~, qJo=O 
r ~ 

Q. = z Q . _ ,  - - n . _ , .  Qo = o 
I% 

2 
n .  = n Q . _  , + z n . _  1 ----:-;-. ~ . .  

r t ~  l 
~mo=O 

(6) 

and 
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With the help of Eqs.(6) and (7), the components of stresses and displacements can be 

2 

expressed as 

u ,  

~Z 

GZ 
"Crz 

B66 ~ 

B66 ~ j  

B66 o~.j 
B66 o'.~ 

+ ~  B,+ 

B+, j 

(8) 

where u~j, fi~j and so on are the functions of ~ ,  ~ ,  (~m, and ~ .  The approximate representations of 

stresses and displacements are obtained by truncating Equ.(8) and can be determined once the 
coefficients ~ and ~ are solved from the linear equations of residuals 

m_W~_Rmd~ =_0, 

where _Rm is the vector of boundary residuals and can be calculated with the aid of proper 

boundary conditions of region ~, and _W~ is a weight matrix [~l. 

Ill. THE CALCULATIONS AND ANALYSES OF ENGINEERING EXAMPLES 

Many significant problems have been analyzed by the above formulas, but only two of them 
will he given in this paper to illustrate the characters and advantages of the present method. The 

boundary least square collocation method is employed and the relation 

E•  
G •  • 

Fig.2 A nm~gnesium cylinder 
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is used throughout the calculations. 

E u m l d e  1. A magnesium finite cylinder with transverse isotropy is subjected to a seE- 

equilibrium end stresses prescribed as 

z =  + h: az  = l - 2r 2 ~ r z = 0  

The elastic coefficients of the material are taken from Ref. [-3]. The end probleins of the circular 

cylinders have been the focus of much research attention over many decades and have widely been 

investigatedl3,Tl. Generally, the methods of eigenfunctions or Fourier series are employed. In order 

to obtain results with good accuracy, a large number of terms of the corresponding series should 

-usually be taken, because of the slow convergence. In 1978, Vendhan and Archer calculated 

magnesium cylinders with fifty-three terms of the eigenfunction expansion TM. In this papSr, we 

take twenty-two and twenty terms of Eq.(8) for the cylinders of h / R  = 0.05 and h / R  = 0.2, 

respectively. The results of a, and as on section z = 0 are listed in Table 1. 

Table 1 

Stresses on the section z = 0 of the magnesium cylinder 

r /R  

h / R  

a, = 0.05 

h/R 

= 0.2C 

h / R  

as = 0.05 

h / R  

= 0.20 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.0988 0.0978 0.0947 0.0897 0.0626 0.0735 0.0623 0.0492 0.0340 0.0169 0.0003 

0.0666 0.0657 0.0627 0.0576 0.0505 0.0417 0.0316 0.0214 0.0135 0.0063 0.0000 

0.09B8 0.0957 0.0866 0.0715 0.0502 0.0229 - .0105 - .0500 - .0955 -.1491 -.2033 

}.0666 0.0636 0.0545 0.0393 0.0181 -.0092 -.0424 -.0.810 -.1238 -.1669 -.2100 

The comparison of a 0 (for h / r = 0,05) from Table I with the Vendhan's results has been shown in 

Fig.3. The curves show that the present results are in good agreement with Vendhan's, but the 

present method is more labour-saving and more forthright on the procedure of calculation. 

E x m ~ i e  2. The axisymmetric ellipsoidal point-load rock specimen, as shown in Fig.4, is a 

typical one in the point-load tests, which are used to determine the strength of rock which has 

lower strength or has severely been weathered so that normal tests become powerless. 

Unfortunately, up to now, either in theoretical studies or in experimental investigations the rock 

specimen has been considered as isotropic tsl. In order to simulate the properties of the materials 

more exactly, we adopt the model of transverse isotropy for the first time. The elastic coefficients 

are taken as: E •  = 1.0 x 10Skg/cm2,v• = 0.3 and vl 1 = 0.25, and three different values of El l  
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Fig.3 Comparison of a 0 on section z = 0 

a r e  t a k e n :  a) E l l  = 1.40 x 1 0 5 k g / c m 2 ;  b)  

I Z 

P A 

Fig.4 An ellipsoidal rock specimen 

for point-load test 

E l l  = 1.45 x 1 0 S k g / e m  2 a n d  c) E l 1  = 1.50 

x 1 0 S k g / c m  2 in  o r d e r  to  i n v e s t i g a t e  t h e  v a r i a t i o n  o f  s t r e s s e s  o f  t h e  s p e c i m e n  w i t h  d i f f e r e n t  e las t ic  

c o e f f i c i e n t s .  T h e  d i m e n s i o n s  o f  t h e  s p e c i m e n  a re  O A  = 2 .63 c m  a n d  O B  = 2 . 0 c m .  H e r e  we  t a k e  

e i g h t e e n  t e r m s  o f  E q u . ( 8 )  as  t h e  t r ia l  f u n c t i o n .  T a b l e s  2 a n d  3 l i s t  t h e  s t r e s s e s  o f  t h e  a b o v e  t h r e e  

cases .  

g(cm 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

1.6 

1.8 

2.0 

T~Ir  2 

Stresses (kg/cm 2) on the loading axis of the ellipsoidal specimen 

fit, GZ 

a b c a b c 

0.6836 0.6646 0.6457 

0.6889 0.6700 0.6511 

0.7027 0.6835 0.6642 

0.7195 0.6993 0.6791 

0.7326 0.7106 0.6885 

0.7339 0.7084 0.6827 

0.7181 0.6854 0.6524 

0.7000 0.6549 0.6122 

0.6630 0.5996 0.5353 

0.5777 0.4842 0.3899 

0.1534 0.0046 -0.1458 

- 3.3115 - 3.3105 - 3.3104 

--3.3820 -3.3805 --3.3805 

- 3.5957 - 3.5968 - 3.5960 

- 3.9508 - 3.9779 - 3 ~9760 

-4.5693 -4.5648 -4.5616 

- 5.4407 - 5.4341 - 5.4291 

-6.7411 -6.7307 -6.7223 

-8.7597 -8.7424 -8.7279 

- 12.0715 - 12.0430 - 12.0185 

- 17.8600. - 17.8090 - 17.7640 

-28.7373 --28.6279 --28.5288 
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TaMe 3 

Stresses (kg/cm 2) on the section z = 0 of the eUipsoidal specimen 

r(cm a 

[).0 0.6836 

{),2 0.6619 

E).4 0.5999 

[).6 0.5059 

[).8 0.3896 

LO 0.2579 

1.2 0.1078 

1.4 -0.0191 

1.6 - -0 .0622 

t.8 -0.@293 

LO 0.0030 

O" r 

b c 

0.6646 0.6457 

0.6432 0.6247 

0.5822 0.5646 

0.4897 0.4736 

0.3752 0.3609 

0.2453 0.2326 

0.0964 0.0050 

-0.0297 -0.0386 

-0 .07~ -0.0731 

-0.0315 -0.0324 

0.0303 0.0303 

O" 0 

a b c 

0.6836 0.6646 0.6467 

0.6876 0.6694 0.6514 

0 . 6 ~ 5  0.6826 0.6668 

0.7132 0.7OO7 0.6883 

0.7275 0.7188 0.7104 

0.7359 0.7312 0.7267 

0.7314 0.730~ 0.7292 

0.7010 0.7024 0.7041 

0.6073 0.6103 0.6136 

0.5400 0.54~57 0;5537 

0.4757 0.4869 0.4983 

O" Z 

a b c 

--3.3115 --3.3105 --3.3104 

--3.2505 --3.2492 -3.2489 

-3.0752 -3.0733 -3.0723 

-3.8068 -2.8043 -2.8026 

-2.4741 -2.4713 -2.4691 

-2.1068 -2.1042 - 2 , 1 0 ~ 1  

-1.7306 - 1.7292 - 1.7278 

- 1.3671 - 1.3675 -1.3677 

-- 1.0703 ~ 1.0740 - L0771 

-0.9479' -0.9566 -0.9695 

-0.8671 -0.8893 -0.9017 

I V .  C O N C L U S I O N S  

The following conclusions can be obtained from above analyses and discussions: 

1. By the use of Equs.(7) and (8), we can make the boundary least square collocation method for 

solving the transversely is6tropic axisymmetric problems as simple as the corresponding 

isotropic ones. The present method is much more forthright than Lekhnitskii 's  with 

biharmonic functions. 

2. The present method can provide approximate analytical solutions. I t  is therefore more 

convenient for determining the locations of the characteristic points of stresses, such as 

extreme value points, zero points and so on. These special points are very useful for 

understanding the stress distr ibutions in the specimen. 

3. This paper considers for the in'st t ime the point-load rock specimen as a transversely 

isotropic one, thus several valuable results which cannot be gotten by the use of isotropie 

model  are obtained. Tables 2 and 3 show clearly that the variation of the elastic modulus, 

E l l ,  has great effect on the stress components u, and ae. The radial stress a ,  increases 

significantly with the decreasing of E 11, and the zero point of ~, on loading-axis moves 

defmitely. These are indeed the important  factors which severely affect the accuracy of point- 

load tests [9]. Figs.5 and 6 show the distributions of the radial stress ~, on the loading axis and" 
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Fig.5 The radial stress on the loading axis Fig.6 The circumferential stress on section z = 0 

the circumferential stress a o on the section z -- 0, respectively. Finally, it should be pointed 

out that the larger is the ratio of E 11 / E• the smaller the limiting break load of a specimen 

becomes, ff the loading axis is chosen to be perpendicular to the isotropic plane of the 

material. Therefore, in order to get reliable data, the orientation of the isotropic plane of an 

irregular specimen 19] should be considered. 
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