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Abstract--L-shaped beams subjected to pure elastic-plastic bending are investigated thoroughly. 
The shifting and rotating of the neutral axis of the beam during bending and springback after 
unloading are described mathematically, while the curvatures of the beam before and after springback 
are given. The method proposed in this paper is valuable both to the further theoretical studies of the 
asymmetric elastic-plastic bending of beams with arbitrary cross-section and to its application in 
practical bending operations. 

N O T A T I O N  

a height or width of a L-shaped beam, as shown in Fig. 1 
d distance between neutral axis and a boundary line of the plastic region 
E Young's modulus 

M bending moment 
m dimensionless bending moment 

p* distance from origin to the neutral axis, as shown in Fig. 1 
t* thickness of the wing of the beam 

x, y co-ordinates, as shown in Fig. 1 
ct an angle defined by Fig. 1 
e axial strain 
r/ a parameter defined by equation (13e) 

x* curvature 
a parameter defined by equation (1 ld) 

a axial stress 
a s yield stress 

1. I N T R O D U C T I O N  

Over many decades the elastic-plastic bending and springback of beams has been one of the 
foci of investigations in Engineering Plasticity, since elastic-plastic bending is one of the most 
widely applied metal forming processes in industry. The symmetric bending of beams and 
their springback have been studied systematically and many useful results have been obtained 
[1-5]. However, very little attention has been paid to the case of asymmetric bending. 
Moreover, the researches on this subject have been restricted to the complete plastic bending 
of perfectly plastic beams [6-8]. 

Considering the importance of the asymmetric elastic-plastic bending of beams of various 
cross-section to the manufacturing engineering industry, the present paper aims to reveal the 
characteristics of the asymmetric bending and its springback and to search for a general 
method. To go further into this problem, L-shaped beams are investigated thoroughly. Final 
results show that this is a feasible approach. 

2. ANALYSIS  

The dimensions of an L-shaped beam and the direction of the vector of the bending 
moment loaded on it are shown in Fig. 1. The following assumptions are made in the analysis: 

(i) the cross-section of the beam remains plane during bending; 
(ii) only the stress normal to the cross-section is considered; 

(iii) the material of the beam is elastic-perfectly plastic and isotropic; 
(iv) the beam is stress-free before loading. 
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It is also assumed that no local unloading occurs during the monotonic increase of  bending 
moment  M. The validity of  this will be verified later. In addition, as long as re-yielding does 
not occur during unloading, the unloading process can be considered as superposing an 
elastic effect produced by a bending moment  equal to M in magnitude and opposite to it in 
loading direction. 

In the Cartesian co-ordinate system shown in Fig. 1, the neutral axis of  the beam can be 
described by equation 

x c o s ~ + y s i n c t - p *  = 0, (1) 

where ct and p* are as indicated in Fig. 1. Similarly, the boundary between elastic and plastic 
regions can be written as 

x cos ~t + y sin a - p* = 0, (2) 

where i = 1 or 2 indicates the boundary which is located at the upper or lower side of  the 
neutral axis. 

According to the assumption (i) and equation (1), compatibility of  deformation requires 

e = x * ( p *  - x cos a - y sin ~), (3) 

where e is the axial strain and x* is the absolute value of curvature. Hence, the constitutive 
equations can be expressed as follows when the assumptions (ii)-(iv) are noted 

tr = E x *  (p*  - x cos ~ - y sin a), in the elastic region 
a = ___ a s, in the plastic region. (4) 

Moreover, the continuity of  stress tr across the boundary between elastic and plastic regions 
gives 

E x * ( p * - p * )  = E r * ( p * - p * )  = a s . 

This can be rewritten as 

E x * d *  = o" s, (5) 

where the notation d* = p ~' - p* = p* - p ~ is adopted. Finally, the equilibrium of the beam 
requires 

S S a d x d y  = O, S S a x d x d y  = 0 and ~ a y d x d y  = - M ,  (6) 

M 

Y 
A' A A" 

(I) xcos ~ +y sin a-p~ =0 
(2)xcosa+ysin a-p*=O 
(3)xcosc1+ysin a-p~=O 

OE =p* 

a ~L I ~  A'A=A'I~,=B'B=B"B=f*/2 
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FIG. 1. A real L-shaped beam. 
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FIG. 2. An idealized L-shaped beam. 
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where the integrals are taken over the whole cross-section of the beam. Equations (4)-(6) are 
basic ones for the following analyses. 

2.1. The elastic-plastic bending o f  an idealized L-shaped beam 
In order to show the mechanism of the elastic-plastic bending of an L-shaped beam 

distinctly, an idealized model called an idealized L-shaped beam is first introduced. Such a 
model is seen in Figs 1 and 2, with the cross-section of the beam replaced by two straight lines 

of equal length, i.e. by OA and oB.  However, the area of an infinitesimal segment of length dl 
is regarded as t*dl and the stress on this segment as at*dl, where t* is the thickness of the 
original L-shaped beam. It can be expected that the idealized model will give a good 
approximation to the real beam when t*/a is small. 

The deformation process of the idealized L-shaped beam subjected to a pure bending 
moment can be divided into the following four stages. 

(I) Elastic bending staoe. The basic equations in this stage become 

and 

These equations give 

2p*a - ½a 2 cos ~ - ½a 2 sin ct = 0, 

p* = ]acos~t, 

EK* (½p* a 2 - ½a 3 sin ct) t* = - M. 

0t e = arctg~ - 59.036 °, 

p* = 2a /x / rM,  

and 

(7a) 

(7b) 

(7c) 

(8a) 

(8b) 

where the subscript e denotes the elastic stage. Therefore, in the elastic stage, the neutral axis 
is fixed and described by 3x + 5y - 2a = 0. 

A comparison of the distances from points A, B and O to the neutral axis indicates that 
point A will yield first. At this moment, the neutral axis rotates around the point (~a, 0), and 
the maximum elastic bending moment and the maximum elastic curvature are 

M e = ~ trsaZt *, (9a) 
and 

* x / /~crs / (3aE) ,  (9b) K e 

respectively. In the following analysis, dimensionless parameters used are 

X = K*/K* m = M / M e ,  t = t*/a, p =  p*/a,  ! e '  

and 
Pi = P*/a, ( i = 1 , 2 ) .  

Obviously, stage I holds until m = 1. 
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(II) Elastic-plastic stage PI. In this stage, segment  OB is still in the elastic state, but the 
plastic region develops f rom point  A towards  O. The basic equat ions now become 

p 2/(2 sin ct) - pt + 2p - ½ cos ~ = 0, (10al 

p = ~ cos a,  (10b) 

xp~ sin2ct = 18(½-  2 m / 9 ) / x / ~ ,  (10c) 
and 

K(p~ - p) = 3 / x / ~ .  (lOd) 

F r o m  these equations,  we find 

and 

where 

5 
= arctg 3(1 - ~2), (1 la) 

Pl = (1 - ¢)s in~,  ( l l b )  

3x/25 + 9(1 - ~2)2 
x = (1 lc) 

x / ~ ( 3  - 2~)(1 - ¢ ) '  

= 1 - ~ s [ ( 9 - 4 m ) + 2 x / ( 9 - 4 m ) ( 6 - m ) ] .  ( l i d )  

This stage ends when m = 45/32 - 1.406. 

(III) Elastic-plastic stage PII .  At this stage, point  O is in a plastic state, but  point  B is still 
in the elastic range. The  plastic region now develops along OB and extends towards  point  B. 
The  basic equat ions  change to 

(p - d - cos a) 2 = 4pd ctg a, (12a) 

(p - d - cos ct) 2 (p - d + 2 cos ~t) = 3d cos 2 a,  (12b) 

(p2 + d2 /3)/sin 2 ~t = ½ - 2m/9 (12c) 

and 

xd = 3 / x / ~ .  (120) 
These lead to 

~ = a r c t g  ( -128r/3-192r/2+72q-9)64r/4 , (13a) 

p = q sinct, (13b) 

d = q sin a + 2 cos a - 0.75 cos a/r/, (13c) 
and 

r = 3 / ( x / ~  d), (13d) 

where q satisfies equat ions 

9 q ( 4 q -  1)2 
~- x / 3 ( 0 . 5 - ~ m - ,  2) = 0 (13e) 

8(q - 1) ( 4 r / -  1) 2 - 1 

and 
( 3 -  x / ~ ) / 4  ~< r/~< 3/8. (13f) 

The  expression (13) holds until m = 9 ( 6 x / ~ -  10)/2 - 1.765. 

(IV) Elastic-plastic stage PLII. When m ~> 9(6 x / / 3 -  10)/2, point  B will also yield. Thus  
we have 

+ = 1 (14a) 
P cos e sin ~ ' 

(p2 + d2/3)/sin 2 ~ = ½ _ 2m/9,  (14b) 

(p2 + d2/3)/cos 2 ~ = ½ (14c) 
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and 

and the cor responding  solutions are 

xd = 3 / x / ~ ,  (14d) 

= arctg [ (1 - 4m/9) -  1/2], (15a) 

p = sin ct cos ct/(sin ct + cos ~t), (15b) 

d = ~ /3  (0.5 cos 2 ~ - -  p 2 )  (15c) 
and 

x = 3 / ( v / ~  d). (15d) 

For  the fully plastic bending state, we have c(p = 67.5 °, p "-- 0.2706 and m - 1.8640. 
Obviously,  the above  me thod  can be easily applied to the analysis o f  var ious idealized 

L-shaped beams with different height and width. 

2.2. The analysis of  the elastic-plastic bending of  a real L-shaped beam 
It  can be seen f rom the analysis o f  the idealized model  that  the deformat ion  mechanism in 

every stage is very distinct and the me thod  adop ted  above  is pre l iminary and straightforward.  
It  is then necessary to verify the practicabil i ty o f  the results f rom this model  before  the 
me thod  is spread into wide use. T o  do so, a real L-shaped beam with equal  height and width is 
considered (see Fig. 1). By per forming  a similar procedure  as before, the following solutions 
can be obta ined  for  each stage, respectively. In the following expressions, t denotes  the 
relative thickness, i.e. t = t*/a. 

(I) For the elastic stage. 

5 + 7t2/2 - 3 # / 1 6  
~e = arctg 3 - 3t2/2 + 3 # / 1 6 '  

Pe = (1 - t2/4) (cos ~te+ sin 0re)/4, 

1 1 . t 2 
m e =  - 9  ~ P e -  c t e - l p e t 2 ) / ( 2 d e )  Sln ~X e -- ] ~  sin ~ / / 

and  
d e = sin ct e + ½t cos ~t e -  Pe. 

(II) For the stage PI. 

p2/(2 sin ct) - pl + 2p - ½ cos ~ = - t 2 (ctg 0t cos at + 3 sin 0t + 3 cos ~)/24, 

p = 2cos  ~t/3 + (plt2ctg~t)/6+¼pt 2, 

xp~/sin 2 • = 18(½ - 2 m / 9 ) / x / ~  + 3•pt2/4 + ½Kt 2 sin ~ - ¼rpt t2ctg2ct 
and  

K(p x - p) = 3 / x / / ~ .  

(III)  For the stage PII .  

(p - d  - cos 0t) 2 = 4pdctg 0t - t 2 sin 2 ~/12, 

(p - d - cos ~t) 2 (p - d + 2 cos ct) = 3d cos 2 ct - dt 2 (ctg ~t cos 20t + ~cos 20t) 

- ¼ ( p - d ) t 2  sin2 ot, 

rd = 3 / x / ~  
and 

(p2 + d2/3)/sin 2 ~t = ½ -  2m/9 - t 2 tg 0t (p - d - cos ~t)/(12d) 

+ t2/8 - t 2 ctg 2 ct/12. 

(16a) 

(16b) 

(16c) 

(16d) 

(17a) 

(17b) 

(17c) 

(17d) 

(18a) 

(18b) 

(18c) 

(18d) 

(IV) For the stage PIII .  

(cos-  10t + s in -  * ~)p = 1, (19a) 
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(p2 + d 2  / 3 ) / s i n  2 o~ = ½ - 2 m / 9  + t 2 tg~/6 + 1:2/8 - t 2 c tg  2 ~/12, (19b) 

(p2 + d2/3)cos 2 ~ = ½ + t 2 ctg a/6 + t 2 / 8  - t 2 tg 2 ~/12 (19c) 
and 

xd = 3/x ~ .  (19d) 

The final results in the above three latter stages can be obtained with the aid of numerical 
methods. 

2.3. T h e  s p r i n f f b a c k  a n a l y s i s  

The attention of the present paper, as mentioned before, is restricted to the case of pure 
bending. Therefore, the axis of the beam always forms a plane curve, and the curvature ~ can 
be regarded as a vector which is parallel to the principal normal of the curve. To show this 
clearly, the curvature vector is indicated by the boldface type r later. Thus, the curvature 
vector of springback, r s, is perpendicular to the elastic neutral axis, and has the magnitude 

~c s = m / m  e. (20) 

Let/of be the final curvature vector of the beam after springback. Then, from equation 

K f =  K - - K  s 

with the help of equations (3) and (20), we can obtain the magnitude and the direction of 
vector r f as follows, 

JI 1 1 K f =  K--mcos(0~--~e) + m s i n ( a - a e )  , (21a) 
me [_me 

and 
m 

- -  sin (~ - ~e) 
me f ~ = arctg 

m 
~ - - -  c o s  _(~  - ~ el_ 

m e 

+a.  (21b) 

The geometrical relationship of these vectors are as shown in Fig. 2. 

3. D I S C U S S I O N  

Numerical calculation can be easily completed for every stage of deformation for the real 
L-shaped beam and its idealized model. These results are as shown in Figs 3-6 and Table 1. It 
can be seen that the most distinctive characteristic of asymmetric bending different from that 
of symmetric one is that the neutral axis of the former shifts and rotates simultaneously 
during elastic-plastic bending. This means that calculations of springback become very 
complicated. However, the idealized model proposed in the present paper can reduce these 
difficulties to a certain extent. This has been verified by the procedure of our analysis and the 
numerical calculation. 

Table 1 indicates that the idealized model gives a good approximate solution to the real 
beam. For instance, in the case of t = 0.1, the maximum relative error of a, r and p are 1.1, 
10.0 and 3.0 ~ ,  respectively. Comparison of the basic equations of the idealized model with 
those of the real beam shows that the former can be obtained from the latter when the terms 
containing t 2 and # are all omitted. When the applied bending moment is such that the beam 
is deformed into stage PII or Pill ,  the results for the idealized model will be closer to the real 
solutions. 

Figures 3 and 4 show that the rate of development of the plastic regions in the beam varies 
gradually. For the idealized model, this variation is monotonic, hence, no local unloading 
occurs during bending. However, local unloading will occur for a real L-shaped beam due to 
the rotation of the neutral axis during elastic-plastic bending. This can be ignored in 
applications to engineering problems when t is relatively small. Also, reverse yielding does not 
appear in the idealized beam. 

In addition, Figs 3 and 4 show directly and quantitatively the relationship between the 
magnitude of bending moment m and the development of plastic zones in segments OA and 
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FIG. 3. Diagram of the development of the plastic region in segment OA.  

FIG. 4. Diagram of the development of the plastic region in segment OB. 
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FIG. 5. Relationship of m - ~c 

O B o f  the beam. These  two  figures reveal h o w  the plastic zones  appear, spread and finally jo in  

each other. It can be seen that the t w o  segments  o f  the beam, O A  and OB,  undergo different 
processes  o f  deformation.  The former experiences three elastic-plastic deformat ion  stages, 
i.e. PI, PII and P i l l ,  but the latter experiences only  two,  that is PII and III. When  m = mo, for 

instance, segment  O B  is still in the elastic state, but a plastic z o n e  over voTs appears in 
segment  O A  at this time. As m increases, this plastic z o n e  spreads gradually. When  m exceeds 
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L I I L 
1.2 1 4  1 6  1.8 

m 

FIG. 6. Relationship of m - ctl~ 

TABLE 1. COMPARISON OF REAL BEAMS WITH IDEALIZED ONES 

Stage 
m ~  0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 

l 

PI  1.000 1.108 1.081 59.128 59.403 0.008 0.018 72.043 63.300 

1.200 1.233 1.138 59.410 59.644 0.034 0.041 72.565 68.290 

P I I  1.635 2.374 2.269 62.924 62.816 0.751 0.698 71.412 70.701 

1.700 2.896 2.717 63.860 63.670 1.210 1.086 70.642 70.229 

P i l l  1.864 ~c - -  67.500 .--  ~c - -  67.500 - 

1.882 - -  ~ - -  67.304 - -  ~c, - -  67.334 

n~ o, e.g. m l (=  mS), two plastic zones will exist, Ovt and v2Ts, in segment OA, but only 

one, Ov*, in OB. However, the two plastic zones in segment OB will appear when m 
exceeds ph~ (e.g. m~'). The limiting case will be reached as m arrives at rh 2 and the two plastic 

zones of every segment will join each other at points v3 for segment OA and v~' for OB, 
respectively, at the same time. In these two figures, notation Ti (i = 0, 1 . . . . .  5) and T* (i = 0, 
1, 2, 3) are the characteristic points where the stage of deformation changes. 

4. C O N C L U S I O N S  

The investigation of the title problem performed in this paper is of great practical 
significance since elastic-plastic bending operation of metal components with asymmetric 
cross-section, such as angle steel, has been widely applied in manufacturing industry. Some 
new characteristics which cannot be obtained from the analysis of symmetric bending are 
revealed distinctly. These provide the basis for the further approach to the asymmetric 
elastic-plastic bending of  the beams with arbitrary cross-section. In addition, the present 
results can be used to verify the correctness of  those from other numerical procedures. 

However, the analysis in the present paper is still preliminary. Many factors, such as the 
possibility of local buckling, reverse yielding, the Bauschinger effect and work hardening of  
the material, are not involved. These constitute subjects for further research in this field. 
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