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THE PLASTIC WRINKLING OF AN ANNULAR
PLATE UNDER UNIFORM TENSION ON ITS
INNER EDGE
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Abstract—This paper analyses the plastic wrinkling of an annular plate subjected 1o in-plane
uniform tension stress on its inner edge with the combined use of the Kantorovich method and the
Galerkin method, and discusses the appearance of wrinkles on the flange of a metal circular sheet
during its axisymmetric deep-drawing operation. It is shown that the method provided in this paper
is simple, convenient, and very suitable for engineering applications.

NOTATION

inper radius of an annular plate
outer radius of an annular plate

undetermined coefficient in approximate wrinkling mode
parameter defined by eqn (17)

Young's modulus

secant moduli of effective stress-strain curve and uniaxial stress—strain curve, respectively
deviatoric sirain components

function of non-dimensional radia] coordinate p

function of circumferential coordinate §

differential operators

number of waves

polar coordinates

deviatoric stress components

piate thickness

mode of wrinkling

yield stress of the plate material

strain components

effective strain

non-dimensional parameter defined by eqn (29)

parameters defined by egns (26)

Poisson’s ratio in the elastic regime

parameter defined by eqn (19}

non-dimensional parameter, 1 —p

non-dimensional radiat coordinate, r/b, and one of its values, a/b
effective stress

stress tensor

parameters defined by eqns (3a) and (3b), respectively.
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1. INTRODUCTION

When the inner edge of an annular plate is loaded by an in-plane uniform tensile stress, the
stress state of the plate, according to the theory of plasticity, can be expressed as

a, = YlIn {(b/r)
g = ¥in (b/r) ~ 1] h
Ty = 0

if the plate material is regarded as being perfectly plastic and the total plate has vielded. As
497
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Fig. 1. An annular plate under in-plane tension.

the circumferential stress. ¢, is compressive (Fig. 1), plastic buckling will occur cir-
cumferentially, when the uniform boundary stress, g,. reaches a critical value. This appear-
ance is called plastic wrinkling.

Investigation of wrinkling has a great deal of significance in many branches of mech-
anical engineering. especially in the axisymmetric deep-drawing process of circular metal
sheets (Fig. 2). Engineers require that the flange of a workpiece inits deep-drawing operation
should deform in its plane and not wrinkle because otherwise it will impair the quality of
the product. For this reason the wrinkling of an annular plate has been the focus of much
research attention over several decades. Geckeler(1] simplified the problem and treated it
as a one-dimensional model, furnishing some formulae to predict the critical circumferential
stress and the number of waves. His model was later employed and extended by many other
researchers[2—4]. Reference [5] realized the limitation of Geckeler's one-dimensional model
and studied the problem using a two-dimensional one by means of the energy method.
However, as recently pointed out by the authors[7], their resuits may still be too simplistic -
for general application.

In this paper, the plastic wrinkling equation is derived based on the aspect of stability
according 10 the two-dimensional model for the wrinkling analysis of an annular plate in
Ref. [5]. and then the title problem is solved by the combined use of the methods of
Kantorovich and Galerkin[8)]. The criterion for predicting plastic wrinkling is obtained and
the applications of the present results to the deep-drawing operation in sheet forming are
discussed in detail. Some useful conclusions are obtained. It is shown that the method
provided in this paper is simple, convenient and very suitable for engineering applications.

2, SOLUTION

2.1, Plastic wrinkling equation
According to the theory of plasticity[3]. we have

{ée,j = yds,,

55
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Fig. 2. The wrinkling of a flange in deep-drawing operation.
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where ¢, and s, are deviateric strain and deviatoric stress tensor. und o, and &, are
strain and stress components, respectively, The notation “d(x)™" indicates an infinitesimal
increment of u corresponding physical variable. Parameters ¢ and ¢ arc defined by

d=(l-2v} £ {3a)
and

Y =3 (24) {3b)

where Eis Young's modulus and v Poisson’s ratio. £ and & are effective strain and efTective
stress, and are defined by

- 1 i ‘_"
£=(xe,¢,)

1

g = (is,5,)’
respectively. By introducing the secant modulus
E, =d6fE (4
the following expression can be obtained from the uniaxial stress—strain staze:

1 1-2
ESTEtIF )

where £7 ix the secant modulus of the uniaxiul stress-strain curve. In this way, ve gel

g IEY .
== TGEY (6)

For the annular plate shown in Fig. 1. wrinkling always occurs first at the outer edge
bocause i, _ - is maximum through the plate. according to egns (1). Therefore. the foilawing
selectinm iy wise and convenient for the weinkling prediction of the annular plate, that is

El= Elin o
Keeping these in mind and noting that stresses are uniformly distributed through the plate

thichr.ess before wrinkling occurs so that £, is independent of the coardinate =. the wrinkling
differential equation for the annular plate can be expressed as

b o = a2 N

DViw-— [_\-,‘__L“ +.\'(-' £ el LL)J =0 &
= crs rFoer oot ot
where
N, =1t0,. Ni=10, (9
28 1 ¢ 1 =2 NI
e (fal )
A S S el (o

D, =1 [6(1+HENY]. (i)

Ob\‘ious]_\x when £ = F eqn (8) reduces to the clastic wrinkling equation.
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Substituting eqns (1) into eqn (8), and introducing the notation
p=rib (124

the non-dimensional plastic wrinkling equation of the annular plate can be written as

D,V'w+In (O)Vw+0Ow =20 (13)
where
at 1 & 1 é?
2 g B L il :
v —ap2+pﬁp+p2 FY'H (14)
V!i=viV? (3
1é 1@
O =;E‘;+F_§§5 (16}
and
D, = 2/[6Yb (1 +$EL]. an

2.2. Approximate solution
For the flange of a metal sheet shown in Fig. 2, the following boundary conditions can
be given when the fiange is considered as an annular plate mentioned above:

w20, p, <psgl {18z
w=0, p=p, (18b)
i +v, (dw =10 = and 1} (15¢H
fpz # =\ p= pg: {1oc:

where
vy ={1-¢ENH2 (i

and

Py =ab (20

Assuming that eqn (13) has a solution of the form

w(p,8) = f(p)g(6) (20
then according to the observation from experiment (Fig. 2) and condition (18a). we can

take g(#) = 1+cos (n8), where n is the number of waves. Therefore, the following equatior
can be obtained easily by applying the well-known Kantorovich method:

D, L(f)=L:(f)=0 (23

where L, and L, are differential operators, i.e.
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4 6 d 3+t 4 3+ d n(nt =4

X8 At skl 2
- 3d9‘ Yod T o & T e d T =
d 3 d n°
y= =43 =+ — {1+ atie ey —ij{- 2
L, { In (ﬁ)dp_ + p{l In (p}]d” + = [in () !}} (24)

It is difficult to obtain the exact solution of eqn (22). although it is an ordinary differential
equation. Hence, we use the Galerkin method to get its approximate solution. To do so,
we take

fip) =clp’ —plp') (25)

This expression satisfies conditions (182) and (18b). and meets condition (18c) in the sense
of the Kantorovich approach. In eqn {25). ¢ is an undetermined coefficient and

;.| - %(I "‘\'-'i')._*.)

iy= 1=y, —2) (26)
Lay=[{1—v ) + 13y, HEITES

are the constants dependent on the properties of the plate material. Substitution of eqn (23)
into the Galerkin equation, eqn (22, leads to

L
D, { L' —pip™) dﬂ“j L(f) (prr—plpp*) dp = 0. (27)

v

To obtain the non-trivial solution of eqn (22} as the form of eqn (25). it is necessary to take

1 !
D#J Li{ph —phph) (ph—pip’) do— “ L.(ph —pip) (ph—pp’) dp = 0. (28)
L] W

o

Considering that

ra

D, =

E!
= BO+OEN (- ¢EN)

o

eqn (28) can be rewritten as
- - o | |
E" ‘ L:(Iq’u_"};n;)":) {I}’i_p':|;-"-_‘) dp 1
= \;" (";\ ,: = | 30+ 0ED (3-0EN T I (29)
o Lo =plops) (ph e —plp’) dp

[

Equation (29) is similar in form to €qns (25) and (31) of Ref. {4}. By applying eqns (28)
and (29). for different geometrical and physical parameters of annular plates. E. can be
solved directly and therefore the critical condition of wrinkling i3 obtainad.

1. DISCUSSION AND CONCLUSIONS

To illustrate the application of the above results to practice. numerical examples are
shown below, The ratio of elastic modulus o vield stress, E/Y, is taken 1o be 500 and
P°‘550n'§ ratio to be 0.3. The vatue of { can be calculated from egn (29). and E® can also
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Fig. 3. The critical values of E'E

be obtained for every given 1.h. The well-known Powell method[6] is used as the solver of
eqn (29). The results shown in Fig. 3 are calculated for ¢ b =002

The non-dimensional values of £ " E corresponding to different wrinkling modes are
shown in Fig. 3, and the curves of ] are plotted on Fig. 4 against 3. The regions above the
dashed line in Fig. 3 and on the right-hand side of the chain line in Fig. 4 are those where
plastic wrinkling cannot occur. Figure 3 indicates that the value of E!'E almost remains
constant in a relatively large interval of 2. Figure 4 shows directly that for a smaller ¢, the

corresponding wave number 1 must be large once wrinkling takes place. That is to say. the

o7 L
i
gl ez g B 7|8 z 4 /3
‘ 1y | | [ I,
Wrorerg I i | l | ! ! ‘I/
TR ! /}’
e by bl .7
byt L1 7
| | ],J,f‘r /:’ /s
0% = .--—"'"1—]’}' :‘,! ///
—_— | P
¢ BREPY
03 b fJ,}/f"/_’
o2 |-
-—-——’-#—. |
ot b = i
Ne O wWrnRung . I
1 ! ‘! ] i
G c c2 &3 ca zs c6 o?

Fig. 4. The critical curves of annular plates.
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Fig. 5 The variation of wave number # with .

wrinkling modes corresponding to & small wave number appear only if the width of those
flanges is large. Figures 3 and 4 also show that the values of { of two neighbouring wrinkling
modes approach each other as  decreases. This fact tells us that it is impossible to predict
exactly the wave number when wrinkling occurs at a lower vatue of { because there exist
many dicturbionces during deep-drawing operation, Figure 5 compares the present results
with those from experimentsf9]. It alse supports the above conclusions, Figure 5 indicates
that the theoretical resuits of this paper are in good agreement with experimental values.
More accurate solutions can be obtained by the present method when better approximate
functions f(p) and g{#) are taken.

In this paper, a static criterion is applied 1o predict wrinkling. It is a weli-established
fact that non-conservative systems should be analysed by the dynamical method. However.
the vahidity of the present analvsis is preliminarily confirmed by some experimental results.
O course. 1215 still open for further studies.

tt follows from the procedure of the above analysis that the method provided in this
paper is convenient and forthright and is very suitable for engineering applications. The
approximate solution obtained is simplz in form and is in good ugreement with experiments.
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