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Abstract-Based on the adaptive Dynamic Relaxation (aDR) method, a modified adaptive Dynamic 
Relaxation (maDR) method is proposed which is more efficient than the former in solving non-linear 
problems. It is then applied to analysing the elastic-plastic bending of circular plates in large deflection 
and their following wrinkling, and leads to satisfactory results compared with corresponding experimental 
ones. It shows that the maDR method possesses vast vistas of applications to engineering problems. 

NOTATION 

radius of a circular plate 
damping matrix 
damping factor 
deflection of the circular plate at the position on 
mid-plane where a ring load exerts 
modulus of elasticity 
deviatoric strain 
vector of generalized external force 
shear modulus 
material hardening modulus 
stiffness matrix 
bending moment 
mass matrix 
the element of M 
membrane force 
number of iteration with respect to fictitious 
time 
total external load 
vector of internal force 
density of the ring load 
density of the uniform pressure for circular plates, 
or of external load in general 
radial coordinate 
radius of the ring load 
deviatoric stress 
radial, circumferential and vertical (in z direction) 
dispalcements, respectively, on the mid-plane of the 
plate 
central deflection of the plate 
vector of generalized solution 
vectors of fictitious velocity and acceleration, 
respectively 
material yield stress 
vertical coordinate 
shear strain 
a small increment of (. .) 
radial or circumferential strain 
circumferential coordinate 
curvature of the plate 
Poisson’s ratio 
stress 
increment of fictitious time 
Mises yield surface 

I. INTRODUCHON 

In order to analyse various complicated problems 
in engineering, many kinds of efficient numerical 
methods such as finite difference method, finite 
element method and the weighted residual method 
have been developed. However, the accompanying 
problem is that large computers are needed to solve 
the related large scale equations. Sometimes, the 
equations are so large that one can only obtain rough 
results. This is especially conspicious in solving non- 
linear problems. In addition, numerical instability 
during iteration is often involved. 

In the traditional methods of solving equations 
from static equilibrium problems, it is considered that 
internal forces exist initially in the structures. In so 
doing, one assumes that the external forces were 
exerted very slowly so that the dynamic process of the 
structures could be neglected. In fact, as has been 
pointed out by Rayleigh [l], the static solution of a 
mechanics system can be referred to as the steady 
state part of the transient response of the system to 
step loading. This approach was successfully applied 
to solving linear problems by Otter [2] and Day [3] 
independently in 1965, and was named the Dynamic 
Relaxation (DR) method. 

Nowadays, researchers are attracted by the 
efficiency of solving non-linear problems with DR. 
The applications of DR to various problems indicate 
that the method has the following distinctive features 
(see, for example, [4-71). 

(a) The scheme of its algorithm is fixed so that the 
programing becomes straightforward. 

(b) There is no ‘need to solve large scale equa- 
tions directly but, instead, to obtain solutions with 
simple explicit iterations, which makes it possible to 
solve complicated problems using a microcomputer. 
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(c) It is incredibly reliable and indefatigable in where r” is the pseudo-time increment of the n th 
seeking an equilibrium state. iteration, 

Underwood [8] summarized the advances of the 
DR method up to 1982 and proposed an adaptive 
Dynamic Relaxation method. It is a typical paper on 
DR. 

R”=F-P(X”) 

The present paper, based on the aDR method, 
proposes a modified adaptive Dynamic Relaxation 
(maDR) method which is more efficient than the 
former. Compared with aDR, the latter possesses 
advantages of higher rate of convergency and less 
storage of intermediate data. Moreover, by making 
use of the character of maDR, the paper overcomes 
naturally the main difficulties in applications of the 
well-known dynamic criterion on stability, and 
successfully predicts the plastic wrinkling loads of 
circular plates during axisymmetric bending. The 
applications of the present method to the analysis 
of elastic-plastic bending and wrinkling of circu- 
lar plates, which couple the non-linearities from 
geometry and material behaviour, indicate that the 
maDR method has broad prospects of applications to 

*- 112 = (X” _ x”- I)/rn 

and 

* = (s” f 112 _ XVI- 1/2y2n. 

Obviously, as M is diagonal, (3) is algebraic. That is, 
each solution vector component may be computed 
individually. 

The differences between the aDR and maDR 
methods are the calculations of c” and X0 in iterations 
(3). In the latter, c” is calculated by 

engineering problems. 

2. THE mnDR METHOD 

The governing equations describing 
mechanics problem can be expressed as 

P(X*) = F, 

a static 

(1) 

where X* is the vector of actual generalized solution 
of the problem. If instead of X*, an approximate 
solution, X, is substituted into (l), a residual due 
to disequilibrium, R = F - P(X), appears. It is con- 
sidered that the residual force vector leads to the 
movement of the system so that the corresponding 
dynamic equations become 

MX+Cg+P=FF, (2) 

where M and C are fictitious mass and damping 
matrices. The word ‘fictitious’ indicates that the 
dynamic process described by (2) is fictitious as 
the maDR method is used so that M and C can be 
artificially chosen to obtain the static solution in a 
minimum number of pseudo-time increment steps. 
Therefore, one often chooses them as diagonal ones 
and makes C = CM. In so doing, one obtains explicit 
iteration formulas for solving the approximate sol- 
ution vector, X, when the central difference scheme 
with respect to pseudo-time is used, i.e. 

Xl+ l/2 _ 2 - 7°C” 
--X.-‘/‘+&M-‘R 

Xn+I=p+Tn+I~+l/2, (3) 

and each element of X0, xy, is obtained in such a 
way that x:=(x: +x:*)/2, where x: and x:* are 
the values of two neighbouring but opposite peaks 
of locus of xi detected in the manner of c = 0. 
Furthermore, to guarantee the numerical stability, 
the element of M is determined by the Gerschgiirin 
theorem as 

Q>~(r”)2~Ikj,l, (4) 
I 

where k, is the element of K which is calculated by 

K=aP(X) 
dX’ 

Then, the algorithm of the maDR method can be 
expressed as: 

(a) compute M; X0 = X0 = 0; co = 0, 
(b) determine ff = (X* + X**)/2, 
(c) X0 = X and X0 = 0, 

(d) eKET eRR and N given; n = 0, 

(e) calculate M again, 
(f) compute R”, 

(g) if)R1(6e,, stop, otherwise continue, 
(h) calculate X”+ Ii2 and cn(X”* = r"M-'R0/2), 
(i) if 2,(x, ’ “+ 1’2)2 < eKE stop, otherwise continue, 
(j) determine X”+ ‘, 
(k) exert boundary conditions, 
(1) n=n+l, 
(m) if n 3 N stop, otherwise return to (e). 

No numerical instability was found during iter- 
ations of the above algorithm. Moreover, the com- 
parisons of two examples in the present paper show 
that the present method may save 10% of iteration 
steps compared with aDR. Throughout the present 
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calculations, eKE = I.E - IO- 1.E - I5 and eRR= 
1 .E - 6 were taken. The values of N in different 
examples were different. 

Difficulties usually exist in the applications of the 
dynamic criterion. The main problems are that: 

(i) an initial value problem will be treated as one 
uses the criterion, while it is difficult for the usual 
methods of solving static problems to attach such a 
function; and the criterion relates to any initial 
disturbances as well as to the bounded property of the 
mechanics system as time t + CC, and 

(ii) various movements due to disturbances will 
produce comphcations of loading and unloading. 

Fortunately, the maDR method can naturally 
combine with the dynamic criterion. Firstly, the 
maDR method itself solves static problems by trans- 
forming them into corresponding dynamic ones. 
Hence, there does not exist any difficulty in producing 
dynamic disturbances. Moreover, these disturbances 
possessed by maDR are free, and one can also 
observe the bounded property of a system over a long 
time. Secondly, one should first overcome the 
~fficulties from loading and unloading during 
iteration as maDR is chosen to solve an elastic- 
plastic problem, so that problem (ii) will also be 
resolved. 

It is easy to write an algorithm on detecting plastic 
w~nkiing of circular plates during their axisym- 
metric bending according to the above statement. 
Obviously, one should only observe the bounded 
property of the incremental circumferential 
displacement, 6v, because before wrinkling 6v = 0. 

3. BENDING AND WRINKLING OF CIRCULAR PLATES 

The elastic-plastic bending in large deflection and 
the following wrinkling of circular plates subjected 

Fig. 1. Illustration of loading and boundary conditions. 

to ring load and of those subjected to uniform 
distributed pressure are to be analysed. The boundary 
conditions of the latter are simply supported or 
clamped ones, but those of the former are shown in 
Fig. 1 where 

pr,(cos 0 - p sin 8) 

N”‘(b +ff,)(sinB +pcos8) 

and 

hi,, = N&/2. 

In the above expressions, u, is the radial displacement 
on z = h/2 at the plate periphery, and P = 0.3 and 
0 = 20” are taken throughout the calculations. In 
fact, the plate shown in Fig. 1 is a mechanics model 
of the specimen in a conical cup test [9] which is one 
of the standardized tests in research on sheet metal 
forming. 

Under the cylindrical coordinate system, the 
equilibrium equations of incremental form can be 
written as 

asiv, 1 a6N," 1 

ar+- 
ras+7("N,-"No)=0 

B 
Rote with thickness 1.5mm: 

a 
E=2x104 kQ/mn’ 

Y= 20.87 kg/mm2 
v =0.2951 

IO L 

I I I I 
0 0025 0.050 0.075 0. CO 

c 

Fig. 2. Stress-strain curves of plate materials. 
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a6N,,, 1 asN,, 
- - 

ar +F do 
+fSN,=O 

ast4 2 am, 
‘+_ 

i askf, 2 a=6M,, 
---- 

ar r dr r dr r dr 30 

2 ddM,,, 1 d26M d%o 
+7---- 80 +j3 (I+ 802 +N+WJ 

(N,o + 6N,,,) + & SN,,) ’ 1 

(N,o + 6N,,,) + g dN,1, 1 
+ 
+ --+- 

( 
;atj; :~)(N~,+~N~))+69=0. 

The relations between strains and displacements are 

aw i ahw 

+z Yae ( ) 

a26w 
8K,= -T 

ik,,= - 
i a6w i a& 
-- +-- 
r dr r2 dB2 

The simple Jz theory of plasticity is used; that is, in 
the elastic region: 

in the plastic region: 
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, 
(a) 125-IO-UC: q=0.667kg/mm2 

(b) 125-IO-US: g=O 341kg/mm2 

(iii) 

Fig. 3. (i) Load-central deflection curve of 12%I&UC; 
(ii) load-central curve of 125-IMJS; (iii) distributions of 

plastic regions (0: experimental; -: theoretical). 
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Fig. 4. Loaddeflection curves. (i) 75-l .5-R:: :; (ii) 6(r$R22.5. 
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When the above governing equations are 
changed into corresponding finite difference ones, the 
approximate solution can be obtained easily by the 
algorithm described in the previous section. In fact, 
before wrinkling, the deformation of a plate is 
axisymmetric so that the equations may be simplified 
significantly. 

4. NUMERICAL RESULTS AND DISCUSSION 

The numerical results from the maDR method are 
compared systematically to the experimental ones. 
For the convenience of discussion, the following 
notation is adopted: (i)-(ii)-(iii) (iv); representing (i) 
the ratios of the plate (mm); (ii) the thickness of 
the plate; (iii) the type of loading, ring load (R) or 
uniform pressure (U); (iv) number (mm), the radius 
of ring load, S(C), simply supported (clamped) 
plate to uniform transverse pressure. For example, 
75-l.S-R22.5 stands for the plate of radius 75 mm, 
thickness 1.5 mm and subjected to a ring load with 
radius 22.5 mm. 

For the plates loaded by ring loads, the corre- 
sponding experiments were carried out by the 
authors so that the real stress-strain curves of 
the plate materials could be used in the present 
calculations (see Fig. 2), while for those subjected to 
uniform pressure, experimental results were taken 
from [lo], therefore in our analysis, the coefficients 
of material were also identified with the paper: 
E = 2.04 x lo4 kg/mm2, v = 0.28, Y = 34.5 kg/mm2 
and the material was considered as an elastic- 
perfectly plastic one. 

Figures 3 and 4 show that the numerical results 
from the maDR method are in very good agreement 
with experimental ones in all the cases of determining 
axisymmetric deformation states, detecting wrinkling 
loads and revealing the developments of plastic 
regions. The accuracy of the numerical results can 
also be shown quantitatively, for example, by the 
errors of wrinkling loads, which are 5.26, 3.68, 3.67 
and 6.4% for the cases 60-1.5-R22.5, 60-2.0-R22.5, 
75-1.5-R22.5 and 75-1.5-R42.5, respectively. 

5. CONCLUDING REMARKS 

The efficiency and potential of the maDR method 
applied to elasto-plastic deformation and bifurcation 
have been shown by the above results. However, 
it should be pointed out that other approaches 
of improvement of the DR method should also be 
brought to general attention, such as the semi-explicit 
approach and the combination with other iteration 
methods. 
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