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Ai~traet--In this paper the applicability of J2 deformation theory to the stamping of circular sheets 
is discussed through the comparison of various cases whose loading paths deviate from proportional 
loading paths to varying degrees. It is seen that the potential of deformation theory is not as great as 
has previously been supposed. 

N O T A T I O N  

See Re£ [I]. 

1. I N T R O D U C T I O N  

The authors investigated the stamping of circular sheets in the conical die cup test using 
simple J2 flow theory and obtained satisfactory results in Parts I and II of this study [1, 2]. 
However, there exists a disadvantage: the method uses a lot of computer time. Although the 
maDR method makes it possible to solve complicated problems with microcomputers, it 
does affect the efficiency of so doing to various degrees. The main factor responsible for this 
weakness is the incremental algorithm of the flow theory. Therefore, researchers, and 
especially engineers, are continually searching for more convenient approaches. 

Deformation theories are simple, and have received great attention for over half a 
century. Although not entirely satisfactory from the point of view of theoretical mechanics, 
their potential seems to be considerable, especially with reference to the plastic buckling 
paradox of plates and shells. The latter has caused many researchers to study again the 
general applicabilty of such theories. The discussion by Budiansky in Ref. [3] is excellent in 
this area, and showed that deformation theories of plasticity may be used for a range of 
loading paths other than those of proportional loading without violating the general 
requirements for the physical soundness of plasticity theory--i.e, he showed that deviations 
from proportional loading are admissible. Furthermore, he gave a total loadino path to 
expand the range of application of deformation theory. However, investigations of specific 
problems seem to show that many more deviations than just total loading are possible. For 
example, the analyses of the deformation of a hollow cylinder subjected to internal pressure 
[4] and torsion [5], and the torsion-bending [6] of square bars and the bending of circular 
plates subjected to uniform transverse pressure [7], showed that solutions from defor- 
mation theory were in good agreement with those from flow theory and experimental 
results. BeiChuan Hap [8] has concluded that deformation theories are applicable as long 
as no local unloading occurs during the loading process, even if the loading path deviates far 
from proportional loading. 

Can one, therefore, obtain satisfactory results from deformation theories for the stamping 
problems of sheet metals? If the answer is in the affirmative, it will make engineering 
analysis quite simple. 

Let us first study the loading paths at some points of circular sheets 150-2.0-C45, 
150.2.0.C65, 250-10.0.C70 and 250-10.0-UC with the aid of the simple J2 flow theory, where 
UC means that the plate is subjected to a uniform pressure and is clamped on the periphery 
of its mid-plane, and other notation is explained in Refs [1, 2]. Figure 1 shows that the 
loading paths of the points in 250.10.0-UC are very close to those of proportional loading, 
while those in 250-10.0-C70 deviate from proportionality slightly, but those in 150.2.0-C45 
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FIG. 1. Variation of ~,/a o of various plates (coordinates of the points (r, z) (mm)). 150-Z0-C45(1): 
(37.5,-1), 150-2.0-C45(2): (60,1); 1:50-2.0-C65(1): (42.875,-1), 150-2.0-C65(2): (58.929,1); 
250-10.0-UC(1): (50,-5), 250-10.0-UC(2): (25,5); 250-10.0-C70(1): (87.5,-5), 250-10.0-C70(2): 

(62.5, 5). 

and 150-2.0-C65 deviate far from it. Moreover, the calculations show that no local 
unloading occurs during the whole loading processes of 250-IO.O-UC and 250-10.0-C70. We 
can therefore examine in some detail the applicablity of J2 deformation theory to the 
various cases of the bending of circular plates. 

2. SOLUTION BY J2 DEFORMATION THEORY 

2.1. Loadinff process 
As shown in Fig. 2, the radial section of a circular plate is divided into four regions: region 

I is the elastic region, regions II and IV are those with single-sided plastic regions, and 
region III is that with a double-sided plastic region. The equilibrium equations (see 
equation (8) in [1]) are now simplified to 

ON---r-" r = [ Or + I ( N ' -  N°) O, 

(1) 
0 M, 0Mo + d2w 1 dw 

dr - - T - + r \  Or Or ,] N ,  ~ r  2 + r N° ~-r + q = O 

where w is the vertical mid-plane displacement, q is the external uniform transverse 
pressure, N ,  and N O are membrane forces and M ,  and Ms are the bending moments in the 
radial and circumferential directions, respectively. The geometrical relations (see equation 
(10) in [1]) can be expressed correspondingly as 

and 

Ou 1lOw V . 
+ 2 \ ~ )  , ~o=; 
02W 1 OW 

K ,  = Or 2 , Ko . . . .  r Oy 

e, = e ° + zK , ,  eo = e ° + zKo 

, (2) 
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FIG. 2. Elastic and plastic regions in the radial section. 

where u is the radial mid-plane displacement, e, and e0 are the strain components and K, 
and K0 are curvatures in the radial and circumferential directions, respectively. 

In the elastic regions, Hooke's law applies, and can be written as 

~: = ~ [~o + w o + z ( r ,  + v ro ) ]  

E o , (3) 
aS= 1--Z-~[~o + ve ° + z(Ke + vK,)] 

while in the plastic regions, J2 deformation theory gives 

~,P ~ E , { ( I +  , o ] = H , ) e ,  + HTe ° + z[(1 + H*)K, + HTKa]} (4) 

~r~ ~ E , { ( I +  , o H,e,* o +  .j" = Hx)e  o + z[(1 +H*)Ko+H*K,]}  

where the superscripts e and p stand for elastic and plastic principal stress components, 
respectively, and 

E/(1 - 2 v ) -  2E,/3 ] 
H* = E/(1 - 2v) + 4E,/3 

3EE° I 
E, = 3E - (1 - 2v)E ° 

(5) 

where E and v denote the Young's modulus and Poisson's ratio, respectively, and E ° is the 
secant modulus of the uniaxial stress-strain curve of the sheet material. 

It is assumed that the plastic regions are monotonically developed during the loading 
process and that the boundary between the elastic and plastic regions is at z = ~. The 
continuity of stresses across the boundary and the Mises yield condition lead to the relation 

where 
AI (  2 -t- A2( + A 3 =- 0, 

A, = B,(K 2 + r 2) -I- B2K,Ka l 

A2 = eo (2B1 K, + B2Ko) + e°(B2 K, + 2B l K°) I ' 
A3 B1 (/~o2 _t_ coo2) _1_ o o = B2~ r eo + B3 

and 
" N  

B 1 ---- v 2 -- v + 1, | 

B2 = - v 2 + 4v - 1, I 
B3 = - [ Y(1 - v2)/E] 2 

The two real roots of equation (6) determine the common boundary as 

~ ,  - L\2-~T, / - A, j 

(6) 

(7) 

(8) 

(9) 



330 L.C. ZHANG et al. 

and hence 
; f'h/2 

(N,, N o, M,, Mo) = T v dz + T ~ dz + (lO) 
- h / 2  

this holds for all regions of the plate as long as one replaces ~- and ~ + with ( - h/2) and 
(h/2), respectively, for region I, replaces ~ + with (h/2) for region II, replaces ( - with ( - h/2) 
for region IV and deletes superfluous terms at the same time. In equation (10), 

T=(a,, ¢r o, za,, zao). (11) 

Usually, numerical integration is necessary for the calculation of equation (10), owing to 
the variation of E, with spatial coordinates. However, if the material of the circular sheet is 
an elastic-perfectly plastic one, explicit expressions for N,, etc., can be derived [9] as 

E N, = ~ {A*h + A** [h(~- + ~ +) - (~ +2 _ ~_ 2)] } 

E 
No - 1 - v ~ {A~h + A** [ h ( ~ -  + ~ + ) _ ( ~ + 2  _ ~_2)]}  

EB, ['h 2 ] 
M, = 1---S~L~-(~ + - ~ - ) - ( ~ + '  - ~-~)/3 

l Mo - 1 --~2 (~+ - U ) - ( ~ + ~  - ~ -~ ) /3  

(12) 

where 
A * = e  °, +re °, A**=½(K,+vKo) ) 

,4* = ~o + v : ,  a t *  = ½(ro + v r , )  I" (13) 

B,= A**, Bo= A** 

Numerical results can be obtained easily with the aid of the maDR method [1, 10]. For a 
general material, one should use expression (10), while for an elastic-perfectly plastic 
material, the application of equation (12) is convenient. 

2.2. Unloadino process 
Assuming that the state of a point in the plate is at 0* on the loading stress-strain curve at 

the end of the loading process (cf. Fig. 3), one can establish an unloading coordinate system 

e 
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FIG. 3. Coordinate systems of loading and unloading. 
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(UCS) e*O*a* whose axis directions are opposite to those of the corresponding loading 
ones. Letting ~ be the deflection in the loading coordinate system (LCS), w* be that in UCS 
and ff be the deflection at the end of loading process in the LCS, introducing similar 
notation for stresses and strains, etc., and considering the directions of the principal axes of 
stresses and strains in LCS and UCS, one obtains 

ff = ff + w*, ti =~ + u*, 

~r = ~r "JV •r*, ~O = eo + e~, (14) 

etc. 

Obviously, # and #, etc., satisfy the equations in the loading process--see equations (1) 
and (2). The substitution of equation (14) into these equations therefore yields the equations 
in the UCS as follows: 

ON* 1 , 
o--7- + ;(N, - N*) = o, 

02Mr* I(2aM* aM'l) ~a2w * [ a2#  a2w*~ 
0 7 + ; \  ~ o, + N" ~r~ + N * [, ~ir~ + -~-~= ) 

l r -  w. Ow./1 o. 
+;LNo~-+N* ~+-~-r /j+ = o  

(15) 

and 
3u* 

0 . _ _  
8 r  - -  ~r 

u* 
, ~ 0 .  = _ _  

K *  = _ _ _  

K ~  = _ _ _ _  

+ ~ + G - r  + 2\ a, ) 

r 

(~ 2 W *  

~r 2 

10w* 
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The form of the constitutive equations in the UCS is the same as that in equation (10) for a 
general material or is the same as that in equation (12) for an elastic-perfectly plastic one. 
However, it should be noted that in the UCS, the Mises condition becomes 

,2 trJ '2 + a, - a~' a* = 4 7 2, (17) 

where Y is the stress at 0"; see Fig. 3. 

3. D I S C U S S I O N  A N D  C O N C L U S I O N S  

Solutions from J2 deformation theory obtained by solving the above non-linear equa- 
tions with the aid of the maDR method [1, 10] have been obtained and compared with 
corresponding solutions from the simple J2 flow theory, which wore found to be in good 
agreement with experimental results [1, 2]. It follows from Figs 4-6 that solutions for 
250-10.0-UC from J2 deformation theory accord well with those from the simple J2 flow 
theory, where the loading paths are closer to proportional loading. However; for 250-10.0- 
C70 (see Figs 5 and 7), significant discrepancies exist between the solutions from the two 
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- - * - -  Deformation theory 

- - A D  FlOW theory 

FIG. 7. Comparison of plastic regions in radial section of 250-10.0-C70 with lateral load 450 kg. 

theories, although there is no local unloading during loading and the loading paths are not 
far from the proportional one. In addition, for the plates Of 150-2.0-C45 and 150-2.0-C65, 
solutions from the deformation theory are so much at variance with those of flow theory or 
that rendered by experimental methods that they are useless for engineering purposes. It is 
therefore obvious that although they may be used for a problem with no local unloading 
during the loading process, one should be careful in applying deformation theory if the 
loading paths are not closer to those of proportional loading. It follows that the applicable 
potential of deformation theory is not as optimistic as has been imagined previously, at least 
in the case of sheet stamping. 

It should, however, be noted that the extent of any deviation from the proportional 
loading path is very much related to the distribution and form of the lateral load. For a 
problem with a lateral load distributed gently, the load paths will be close to the 
proportional paths, whilst for those which vary sharply, the former will deviate far from the 
latter. Hence, one may expect that deformation theories will lead to reasonable and useful 
results--for instance, in hydroforming problems. 
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