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Abstract--This paper thoroughly investigates the axisymmetric deformation mechanism of work- 
pieces in conical cup tests using the modified adaptive Dynamic Relaxation method (maDR 
method), and finds many important mechanical features of them. In addition, it proposes a simple 
approximate analytical model for engineers. 
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N O T A T I O N  F O R  P A R T S  I TO IV 

initial radius of a workpiece 
damping matrix 
proportionality coefficient between C and M 
Young's modulus 
secant modulus 
tangent modulus 
deviatoric strain component 
generalized force vector 
shear modulus 
thickness of sheet 
work-hardening modulus 
the second invariant of the deviatoric stress tensor 
curvatures in the r- and O-directions 
mass matrix 
bending moment at the periphery 
bending moments in the r- and O-directions 
reacting force at the periphery 
membrane forces in the r- and O-directions 
rigidity matrix 
external load 
residual vector in equations (3) and (4) of Part I 
deviatoric stress component 
a vector composed by stresses, defined by equation (11) of Part III 
radial mid-plane displacement 
radial mid-plane displacement at the periphery 
deflection 
generalized displacement vector 
initial yield stress 
direction normal to the mid-plane of sheet 
strain 
boundary between the elastic and plastic regions 
semi-angle of a conical die; coordinate in the circumferential direction 
friction coefficient 
Poisson's ratio 
stress 
Mises loading function 

superscripts 
o mid-plane 

loading coordinate system (LCS), see Part III 
at the end of loading process in LCS, see Part III 

* unloading coordinate system (UCS), see Part III 
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subscripts 
r r-direction 

z z-direction 

0 0-direction 

1. I N T R O D U C T I O N  

It is important for production engineers carrying out sheet metal forming processes to select 
sheet materials appropriately and to design forming tools successfully, assuring both the 
required final shapes and the claimed service properties of their workpieces. However, it is 
not easy to do so, because many factors--such as material behaviour of the sheet metal, 
forming conditions, formability criterion adopted, etc. need to be considered. Moreover, 
such factors often affect each other, so that one needs to have a comprehensive view for 
controlling an optimal process from design to operation. Obviously, it presupposes an exact 
understanding of the action of each factor: for instance, the effects of punch and die 
geometries, springback, wrinkling, lubrication and so on. 

However, there exist many difficulties in investigating these problems, owing to their 
complicated characters in coupling non-linearities of geometry and material behaviour. In 
recent years, although there have been many advances in the applications of numerical 
techniques to analysing the forming processes, very large computation time is required. It 
should also be noted that many problems cannot be solved by numerical methods and large 
computers only, but depend on establishing correct mechanical concepts and appropriate 
analytical models. The prediction of the plastic wrinkling of a sheet during forming 
operation is a good example; it is related to the well-known plastic buckling paradox of 
plates and shells--i.e, why it is usually the case that better theoretical predictions of plastic 
buckling load are given by the deformation theory rather than the incremental theory of 
plasticity. 

In this series of four papers, the authors will discuss these problems. In the present paper, 
the authors investigate thoroughly the whole axisymmetric deformation of the workpieces 
in conical die cup tests, which are a kind of standard test in production engineering for 
evaluating the formability of sheet metals. It reveals how plastic regions in a workpiece 
appear and spread, and how they vary with punch diameter. The paper also shows the 
distributions of strains and internal forces, and proposes a simple approximate model for 
engineers that can analyse the deformation of such workpieces and evaluate the formability 
of metal materials. All of the present numerical analyses are carried out by the maDR 
method [1], which was recently developed by the authors and has good prospects for 
engineering applications. 

2. T H E  m a D R  M E T H O D  

Unlike other methods, the maDR method is based on the fact that the static solution of a 
mechanical system is the steady-state part of the transient response to step loading. 
Accordingly, the governing equation describing a static mechanics problem 

P(X) = F (1) 

is changed into a corresponding one for dynamics: 

M X  + CX + P(X)  = F. (2) 

The mass matrix M and the damping matrix C, because we are not interested in the 
dynamic process of the system, are fictitiously chosen so that the static solution is obtained 
in a minimum number of pseudo-time increment steps. Therefore, one often chooses M and 
C as diagonal matrices and makes C = cM. In so doing, one obtains explicit iteration 
formulae for finding the solution vector X when the central difference scheme with respect to 
pseudo-time t is used: 

T n n -~Tn 

2 + z"c" 2 + T"c" M -  1R", (3a) 



a n d  X.+ 1 = X n + ~.n+ 1 i n +  1/2 (3b) 

where r" is the pseudo-time increment of the nth iteration, 

and 

(a) 

R" = F ~ P(X") ,  

X . -  1/2 = ( X . _  X . -  1)/r.,  

~n = (~n+ 1/2 __ f ~ n -  1/2)1,.cn" 

(4a) 

(4b) 

(4c) 

The differences between the DR (refer to [2], for instance) and maDR methods are in the 
calculation of c" and X °. In the latter, c" is calculated as 

c" - f ( x " ) ' P ( x " ) ' / x / :  (5) 

and the each element x ° of the initial vector X ° is obtained in such a way that x ° = 
(x* + x**)/2, where x* and x** are the values of two neighbouring but opposite peaks of 
the locus of x i determined by putting c = 0. These treatments make the maDR method more 
efficient than the DR method. Furthermore, to guarantee numerical stability, the elements 
of M are determined by the Gerschg6rin theorem. Compared with other methods, maDR 
has the following conspicuous features: 

(i) there is no need to treat large scale equations; instead, one can obtain solutions with 
simple explicit iterations; this makes it possible to solve complicated problems with a 
small computer; 
(ii) it is very reliable for seeking an equilibrium state. 

3. D E F O R M A T I O N  ANALYSIS  O F  W O R K P I E C E S  IN C O N I C A L  C U P  TESTS 

A workpiece in a conical cup test, see Fig. l(a), can be idealized by the model shown in 
Fig. l(b). The action of the cylindrical punch is considered as a ring load p acting at a radius 
equal to that of the punch, rp. If it is assumed that the friction between the workpiece and 
the conical die is determined by the formula 

friction force = (friction coefficient/~).(normal force on die cone), (6) 

.where # was measured experimentally with no lubrication applied, the boundary forces can 
be expressed as 

Nb = _ prp(COS 0 --/~sin 0) (7a) 
(b + Ub)(sin 0 +/~COS 0) 

(b) 

Investigation of sheet metal forming by bending I 287 

°[z 
b 

I q "1 M. 

FIG. 1. (a) Schematic diagram of the conical cup test. (b) Mechanical model of the workpiece. 
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and 
Mb = ½hNb, (7b) 

where 0 is the semi-angle of the conical die, h and b are the thickness and initial radius of the 
workpiece, respectively, and ub is the radial mid-plane displacement at the periphery. 
Cylindrical coordinates are adopted, and the well-known Kirchhoff assumption for thin 
plates is taken throughout the present analysis. 

3.1. Basic equations 
3.1.1. Equilibrium equations. The equilibrium equations including membrane forces in 

incremental form during an axisymmetric deformation process can be written as 

,0ON, 1 
~ - r  + r (6N '  - ,~U0) = 0, 

026Mr 1(206M, 06M°~ N 02(~W 02W 
O ~ Y - - + r \  Orr ~-r j +  ' ~ - - + J N ' 0 r 2  

026w 1 /  06w 0w 06w\  
+ ~N,~r~ +-;~N~v;- r + ~NoTr + ~No-~-r) + ~q = 0 ,  

(8) 

where w is the mid-plane displacement in the z-direction, q is the external load, 6(. • .) 
stands for a small increment of( .  • .), and 

f 
hl2 

(N,, N o, M,,  Mo) = (a,, ao, za,, zao)" dz 
d - h ~ 2  

(9) 

are the membrane forces and the bending moments in the radial and circumferential 
directions, respectively. 

3.1.2. Geometrical relations. Von Karman's non-linear relations between strains and 
displacements are 

dfu OwO6w 1/03w'~ 2" 
6e o 

= ~ +  ar ar ~I\W/I ~,  
6u ~o = - - ,  
r 

(10) 
023w 

3K,  = 0r 2 , 

106w 
6 K° = r Or ' 

o and e ° are mid-plane strains in the r- and 0- where u is the radial mid-plane displacement, e, 
directions, respectively, and K, and K o are the corresponding curvatures. 

3.1.3. Constitutive equations. The simple J2 flow theory, i.e. the Prandtl-Reuss relation, is 
used. That is (refer to 1-3], for instance) in the elastic region: 

in the plastic region: 

(~uij V 
6 ~ u -  2G ~6~kk61j, (l la) 

6sij 04962 , (1 lb) 
6eij = ~ + Oaij 

1 - -  2v 
6ekk -- - -  6~rkk, (1 lC) 

E 
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and 
0, when c~(trij+ftrij)<~O ( l id)  

62 = h*6dp, when ~b(alj + 6tr~) > 0, 

where v is Poisson's ratio, E is Young's modulus, G is the shear modulus, e~i are the 
deviatoric strain components, si~ are the deviatoric stress components, q~ is the Mises 
loading function and h* is the work-hardening modulus. 

3.2. Analysis and discussion of examples 
It is easy now to obtain numerical results for the problem named in the title by the maDR 

method, after the basic equations above are changed into corresponding finite difference 
ones. The computer program associated with the present paper is composed of two large 
cycles, see Fig. 2. The inner cycle is the iteration cycle of the maDR method. The iterations 
are carried out for the pseudo-time. The outer cycle is an external loading one. The 
algorithm for the maDR method is outlined in the Appendix. It is necessary for an external 
load to be increased step by step until the total load level is reached. 

Both our experimental study and our numerical calculations were carried out for 
workpieces of thicknesses 1.5 mm and 2 mm, with diameters 120 mm and 150 mm, res- 
pectively. The diameters of the cylindrical punches are 45 mm and 65 ram, respectively. The 
workpieces were made of cold-rolled steel sheet. Its stress-strain curves in the 0, 45 and 90 ° 
directions with respect to the rolling direction and their average curve are shown in Fig. 3. 
The sheet is considered to be an isotropic material, and the average curve is used 
throughout the calculations. For  the sake of convenience, considering that the material 
hardening curve slopes gently, we simplify the hardening curve to that of a bilinear model - -  
i.e. we take 

~145.0 (kgmm_2) (12) when Y~< tr ~< 27.5, 

E ° = ~  62.2 w h e n a > 2 7 . 5 ,  

for the sheet of thickness 2 mm; for that of thickness 1.5 mm, 

f151.1 when Y~<a~<28.1, 
Et° = ~ 53.7 when a > 28.1, (kgmm-2) (13) 

where Et ° is the tangent modulus and Y denotes the initial yield stress. 
The following notation is convenient for further discussions: 

A-B-CD 
[---diameter of punch 

kind of punch; e.g. letter C stands for cylindrical punch 
- -  thickness of the workpiece 

diameter of the workpiece 

! 

externoL Lood I 

1 
I cotcuLote incrementot disp~cements I • ond incrernentoL stresses with moDR method. 

FIG. 2. Flow chart of the computer program. 
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FIG. 3. Stress-strain curves of cold-rolled steel sheets: (a) the sheet of thickness 2 mm; (b) the sheet 
of thickness 1.5 mm. 

For example, 150-2.0-C45 stands for the workpiece of initial diameter 150 mm and thickness 
2 mm pressed by a cylindrical punch of diameter 45 mm. 

Part of our numerical results are shown in Figs 4-11, and compared carefully with our 
experimental ones. It can be noted that they are in very good agreement with each other. 

Figure 4(a, b) shows the whole processes of loading and unloading of the workpieces 
150-2.0-C45 and 120-1.5-C45. They show that the springbacks of the workpieces are slight 
compared to the case of a plate bent to a shape of single curvature. 

Figure 5(a, b) reveals the spread of the plastic regions in the radial sections of workpieces 
150-2.0-C45 and 150-2.0-C65. It is found that the plastic regions of two identical workpieces 
behave differently if subjected to punches with different diameters. For 150-2.0-C45, the 
upper plastic region first appears at the central part of the sheet, and then spreads to 
periphery with unloading at the original part inside the circle of the ring load. However, for 
150-2.0-C65, the spread and unloading occur before the upper plastic region reaches the 
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FIG. 4. External load (P)-punch displacement (wv) curves: (a) 150-2.0-C45; (b) 120-1.5-C4f 

central axis. It should bc noted that only the sheet elements inside the circle of the ring load 
undergo a complicated loading and unloading process, while the elements outside the circle 
arc always in a loading state. It follows from this behavior that the validity of Lu and Sayir's 
method [4] of studying the evolution of plastic regions under the assumption that plastic 
regions appear first inside the circle of ring load and spread with no unloading is very 
limited by the diameter of ring load. 

The distributions of circumferential membrane forces, N e, of 150-2.0-C45 and 
150-2.0-C65 and their variations with external load arc shown in Fig. 6 parts (a) and (b), 
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FIG. 5. Evolution of plastic regions with increasing load: (a) 150-2.0-C45; (b) 150-2.0-C65. 
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respectively. The figure indicates that the variation of N o in the neighborhood of the circle of 
the ring load is sharp, and a band of negative value of Ne exists outside the load circle. This 
band is the essential factor which causes circumferential wrinkling. It should be noted that 
the position of maximum negative value of N o moves from the periphery to the interior as 
the external load increases to a certain value, which makes the curve of No bend near the 
periphery. 

Figure 7 exhibits the curves of the distribution of radial strain e, and circumferential 
strain e 0 on surfaces z = + h/2. It confirms that the deformation process can be regarded as 
one that deforms with large displacements but small strains, because the strains are small 
except in the very narrow region around the load circle. It is to be expected that the radial 
strain on z = h/2 is positive. However, the fact that positive e, appears on part of the surface 
z = - h / 2  is unexpected. Nonetheless, if one has noted that a workpiece in the conical cup 
test is supported on the periphery of z = hi2, and hence there exists a negative bending 
moment  applied to the boundary [see Fig. l(b) and equation (7)], then e, near the periphery 
(on z = - h / 2 )  must indeed be positive. (Other small positive values of e, are due to 
computational errors.) 
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FIG. 7. (a) and (b). 
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F]G. 7. Distributions of strain components of 150-2.0-C45 (external load P = 800 kg): (a) 5, on 

z = - h / 2 ;  (b) 5 e on z = - h / 2 ;  (c) 5, on z = h / 2 ;  (d) 50 on z = h / 2 .  

It is easy to imagine that there would be a region of high curvature around the circle of 
ring load. However, Fig. 8 shows that there exists another high curvature area near the edge 
of the blank. Moreover, according to systematic numerical analyses, the authors find that 
the peak of the latter moves slightly to the periphery as the punch advances. It is very much 
related to the variation of the radial bending moment M,. It is obvious from Fig. 9 that as 
the external load increases to a certain extent, a peak in M, appears at the position 
corresponding to that of the latter high curvature area. 

The radial displacement, u, of the plate elements inside the load circle is very small [see 
Fig. 10(a)]. Furthermore, the deflection relative to where the load acts and the slope of the 
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FIG. 11. Photographs of a workpiece after unloading: (a) loaded surface; (b) back surface. 
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FIG. 10. Distributions of mid-plane displacements of 150-2.0-C65: (a) radial displacement; (b) 
vertical displacement. 

deflection are small [see Fig. 10(b)]. Therefore, an approximate analytical deformation 
model of such a workpiece for engineers can be obtained on the basis of"the plate elements 
inside the load circle being considered as rigid and deformations occurring only in those 
regions outside the circle". The photographs in Fig. 11 provide objective pictures for the 
model. 

4. C O N C L U S I O N S  

It follows from the above analyses and discussions that: 

(1) the maDR method is very efficient for solving the highly non-linear problems of sheet 
metal forming; 
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(2) the e v o l u t i o n  o f  the  p las t ic  r eg ions  in a w o r k p i e c e  is c losely re la ted  to  the v a r i a t i o n  o f  

p u n c h  d iamete r ;  

(3) the m o v e m e n t  o f  the  pos i t i on  of  m a x i m u m  nega t ive  va lue  o f  N o m a y  affect the  plas t ic  

wr ink l ing  of  the  workp iece ;  

(4) the  d e f o r m a t i o n  process  of  a w o r k p i e c e  can  be cons ide r ed  as one  tha t  u n d e r g o e s  large  

d i sp l acemen t s  wi th  smal l  s trains;  

(5) the a p p r o x i m a t e  ana ly t i ca l  m o d e l  p r o p o s e d  here  m a y  p r o v e  useful for p r o d u c t i o n  

engineers .  
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A P P E N D I X  

The algorithm of maDR method can be expressed as 

(1) compute M; X ° = XO = 0; c o = 0, 
(2) calculate 'X = (X* + X**)/2, 
(3) X ° = ~ a n d ~ ° = 0 ,  
(4) eKE, era, and N given; n = 0, 
(5) compute M again, 
(6) calculate R n, 
(7) if IRTI ~< eRR stop, otherwise continue, 
(8) calculate Xn + 1/2 and cn(X 1/2 = ~o M-  1RO/2), 

(9) if ~ (~7+ 1/2)2 ~< eK E stop; otherwise continue, 
J 

(10) determine X *+ 1, 
(11) exert boundary conditions, 
(12) n = n + l ,  
(13) if n ~> N stop; otherwise return to step (5). 

Throughout the present calculations, values of eKE = 1. E -- 10, 1 . E -  15 and eRR = 1 .E -6  were assumed. The 
values of N in different examples were different. 


