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Abstract

This paper develops a new concurrent simulation technique to couple the meshfree method with the finite element
method (FEM) for the analysis of crack tip fields. In the sub-domain around a crack tip, we applied a weak-form based
meshfree method using the moving least squares approximation augmented with the enriched basis functions, but in the
other sub-domains far away from the crack tip, we employed the finite element method. The transition from the meshfree
to the finite element (FE) domains was realized by a transition (or bridge region) that can be discretized by transition par-
ticles, which are independent of both the meshfree nodes and the FE nodes. A Lagrange multiplier method was used to
ensure the compatibility of displacements and their gradients in the transition region. Numerical examples showed that
the present method is very accurate and stable, and has a promising potential for the analyses of more complicated crack-
ing problems, as this numerical technique can take advantages of both the meshfree method and FEM but at the same time
can overcome their shortcomings.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The finite element method (FEM) is currently a dominant numerical tool in the analysis of fracture
mechanics problems, especially for stationary cracks. A large variety of approaches have been developed in
the analysis of the field of crack tip by FEM. However, FEM often experiences difficulties in re-meshing
and adaptive analysis. In addition, FEM is often difficult (or even impossible) to simulate some problems such
as the large deformation problems with severe element distortions, crack growth problems with arbitrary and
complex paths which do not coincide with the original element interfaces, and the problems of breakage of
material with large number of fragments. Meshfree (or meshless) methods have recently become attractive
alternatives for problems in computational mechanics, as they do not require a mesh to discretize the problem
0013-7944/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.engfracmech.2007.05.003

* Corresponding author. Fax: +61 2 93517060.
E-mail address: zhang@aeromech.usyd.edu.au (L.C. Zhang).

mailto:zhang@aeromech.usyd.edu.au


Nomenclature

a vector of interpolation coefficients, defined in Eq. (2)
A, B interpolation matrices, defined in Eqs. (7) and (8)
A(FE), A(MM) transition matrices for FEM and meshfree method, defined in Eqs. (44) and (45)
b vector of body force, defined in Eq. (14)
B(FE), B(MM) transition matrices for FEM and meshfree method, defined in Eqs. (36) and (38)
D Matrix of material constants
f(MM)k, f(MM)k force vectors at a particle k obtained by the FEM and meshfree method, defined in Eqs.

(26) and (27)
F(FE), F(MM) force vectors for FEM and meshfree method, defined in Eqs. (23) and (24)
g generalized displacement of a transition particle, defined in Eq. (28)
g(x) generalized derivative of a transition particle, defined in Eq. (41)
KI, KII, KIII stress intensity factors for mode-I, mode-II, and mode-III
K(FE), K(MM) stiffness matrices for FEM and meshfree method, defined in Eqs. (21) and (22)
n vector of the unit outward normal, defined in Eq. (14)
N FEM shape function, defined in Eq. (18)
pj monomial of polynomial basis functions, defined in Eq. (2)
(R, h) cylindrical coordinate, defined in (10)
u displacement vector, defined in Eq. (14)
u(MM)k, u(MM)k displacement vectors at a particle k obtained by the FEM and meshfree method, defined

in Eqs. (26) and (27)
�u; �t prescribed boundary displacement and traction, defined in Eqs. (15) and (16)
w weight function, defined in Eq. (3)
x coordinate vector
C global boundary
/ shape function, defined in Eq. (6)
U shape function matrix, defined in Eq. (29)
P functional
Cu, Ct boundaries for displacement and traction boundary conditions, defined in Eqs. (15) and (16)
e, r vectors of strain and stress, defined in Eqs. (17) and (14)
k, c Lagrange multiplier, defined in Eqs. (34) and (42)
K, W selected interpolation for k and c, defined in Eqs. (34) and (44)
X problem domain
Xs local domain to construct meshfree shape functions
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domain, and the approximate solution is constructed entirely by a set of scattered nodes. Some meshfree meth-
ods have been developed and achieved remarkable progress, such as the smooth particle hydrodynamics
(SPH) [1], the element-free Galerkin (EFG) method [2], the reproducing kernel particle method (RKPM)
[3,4], the meshfree local Petrov–Galerkin (MLPG) method [5–7], and the local radial point interpolation
method (LRPIM) [8–11]. The principal attraction of the meshfree methods is their capacity in dealing with
moving boundaries and discontinuities, such as phase changes and crack propagations, and their ease in using
the enriched basis functions based on the asymptotic displacement fields near the crack tip [12].

However, the meshfree method usually has worse computational efficiency than FEM, because more com-
putational cost is required in the meshfree interpolation and numerical integrations [13]. Although the burden
of the computational cost is being alleviated due to the development of computer technologies, to improve the
computational efficiency is still a key factor for the simulations of many practical problems, for example, the
three-dimensional dynamic crack problem, etc. Some strategies have been developed for the alleviation of the
above-mentioned problems, but how to improve the efficiency of the meshfree methods is still an open prob-
lem. Coupling the meshfree methods with FEM can be a possible solution.
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Fig. 1. The coupled techniques using the interface boundary.

988 Y.T. Gu, L.C. Zhang / Engineering Fracture Mechanics 75 (2008) 986–1004
In the analysis of crack problems, we can find that a crack region usually occupies only a small part in the
whole problem domain. It is desirable and beneficial to combine the meshfree methods with FEM in order to
exploit their advantages while evading their disadvantages. In the coupling, the meshfree method can be used
only in a sub-domain including the crack and its unique advantages are beneficial to get accurate and stable
results. FEM can be employed in the remaining parts of the domains and its good computational efficiency can
save much computational cost. In some previous research on the coupling of EFG/FEM/boundary element
method (BEM), MLPG/FEM/BEM, and so on [14–18], the major difficulty was how to satisfy the compati-
bility conditions on the interface between the domains of two methods [19], even with interface element meth-
ods and methods based on extension of weak forms. In these techniques, a common interface boundary (e.g., a
curve for a two-dimensional problem, as shown in Fig. 1) is often used between FEM domain, X(FE), and the
meshfree domain, X(MM). The meshfree nodes and the FEM nodes along this interface boundary coincide with
each other, and are dependent on each other. In addition, it is difficult to ensure the high-order compatibility
using the interface boundary [19].

This paper aims to develop an advanced coupled meshfree method (MM)/FEM for crack problems. The
problem domain is divided into several sub-domains: one domain including the crack is simulated by the
meshfree method, the other sub-domains are simulated by FEM, and these two parts are connected by a tran-
sition region (or bridge region). A new transition algorithm is proposed to ensure a smooth transition between
the meshfree and FEM sub-domains. To simplify the numerical integrations, several layers of transition par-
ticles are inserted in the transition region and the Lagrange multipliers method is used to ensure the compat-
ibility conditions. The meshfree shape functions augmented with the enriched basis functions to predict the
singular stress fields near a crack tip are constructed. Around the crack, the relay model [20] is used for the
nodal selection and computing the influence of nodes. Several numerical examples of crack problems are pre-
sented to demonstrate the validity and efficiency of the new coupled method.
2. Enriched moving least squares approximation

To approximate a function u(x) in Xs, a finite set of p(x) called basis functions is considered in the space
coordinates xT = [x,y]. The basis functions in two-dimension is given by
pTðxÞ ¼ ½1; x; y; x2; xy; y2; . . .� ð1Þ
The moving least square approximation (MLSA) interpolant uh(x) is defined in the domain XS by
uhðxÞ ¼
Xm

j¼1

pjðxÞajðxÞ ¼ pTðxÞaðxÞ ð2Þ
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where m is the number of basis functions, and the coefficients aj(x) are also functions of x; a(x) is obtained at
any point x by minimizing a weighted discrete L2 norm of:
J ¼
Xn

i¼1

wðx� xiÞ½pTðxiÞaðxÞ � ui�2 ð3Þ
where n is the number of nodes in the neighborhood of x for which the weight function w(x � xi) 5 0, and ui is
the nodal value of u at x = xi.

The stationarity of J with respect to a(x) leads to the following linear relation between a(x) and u:
AðxÞaðxÞ ¼ BðxÞu ð4Þ

Solving a(x) from Eq. (4) and substituting it into Eq. (2), we have
uhðxÞ ¼
Xn

i¼1

/iðxÞu ð5Þ
where the MLSA shape function /i(x) is defined by
/iðxÞ ¼
Xm

j¼1

pjðxÞðA�1ðxÞBðxÞÞji ð6Þ
In which A(x) and B(x) are the matrices defined by
AðxÞ ¼
Xn

i¼1

wiðxÞpTðxiÞ; pðxiÞ; where wiðxÞ ¼ wðx� xiÞ ð7Þ

BðxÞ ¼ w1ðxÞpðx1Þ;w2ðxÞpðx2Þ; . . . ;wnðxÞpðxnÞ½ � ð8Þ
It should be mentioned here that the MLSA shape function obtained above does not have the Kronecker
delta function properties [13].

In two-dimensional linear elastic fracture mechanics, both mode-I and mode-II crack-tip fields should be
considered. For mode-I deformations, the crack-tip stresses have the following formulations [21]
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For mode-II deformations, the crack-tip stresses are [21]
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where KI and KII are the stress intensity factors for mode-I and mode-II dependent upon the crack length, the
specimen geometry and the applied loading, and (r,h) are the cylindrical coordinates of a point with the origin
located at the crack tip and the positive angle measured counterclockwise from the axis of the crack.

After using trigonometric identities, one can show that all of the functions in Eqs. (9) and (10) are spanned
by the following four basis functions:
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ð11Þ
In the application of the meshfree method to linear elastic fracture mechanics (LEFM) problems, it is
advantageous to add these four basis functions in Eq. (11) into the basis functions so that the stress singu-
larity can be captured without having a very fine nodal density around the crack tip. It was first used by
Fleming et al. [12] in the element-free Galerkin (EFG) method and called the resulting basis as enriched
basis functions.
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Adding these four basis functions in Eq. (11) into Eq. (1), we can obtain the enriched basis functions for a
two-dimensional problem:

(a) with complete linear monomials
pTðxÞ ¼ 1; x; y;
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(b) with complete second-order monomials
pTðxÞ ¼ 1; x; y; x2; xy; y2;
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3. Discrete equations of FEM and the meshfree method

Consider the following two-dimensional problem of solid mechanics in domain X bounded by C:
rrþ b ¼ 0 in X ð14Þ
where r is the stress tensor, which corresponds to the displacement field u = {u, v}T, b is the body force vector,
and $ is the divergence operator. The boundary conditions are given as follows:
u ¼ �u on Cu ð15Þ
r � n ¼ �t on Ct ð16Þ
in which the superposed bar denotes prescribed boundary values and n is the unit outward normal to domain
X.

The principle of minimum potential energy can be stated as follows: The solution of a problem in the small
displacement theory of elasticity is the vector function u of displacement which minimizes the total potential
energy P given by
P ¼
Z

X

1

2
eT � rdX�

Z
X

uT � bdX�
Z

Ct

uT ��tdC ð17Þ
with the boundary condition described in Eq. (15), where e is the strain.
The meshfree method and FEM use the similar global weak form given in Eq. (17). The meshfree shape

functions have been given in Section 2, and the interpolation formulation of FEM can be written as [22]
u ¼
Xne

i¼1

N iðxÞui ne ¼ 3; 4; 5; . . . ð18Þ
where ne is the number of nodes in a FE element, and N is the FE shape function.
Substituting the expression of u given in Eqs. (5) and (18), and using the stationary condition for Eq. (17)

yield
KðFEÞUðFEÞ ¼ FðFEÞ ð19Þ
KðMMÞUðMMÞ ¼ FðMMÞ ð20Þ
where K(FE), U(FE), F(FE), K(MM), U(MM), and F(MM) are stiffness matrices, the displacement vectors, and the
force vectors for FEM and the meshfree method, respectively. Now, we have
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KðFEÞij ¼
Z

X
BT
ðFEÞiDBðFEÞjdX ð21Þ

KðMMÞij ¼
Z

X
BT
ðMMÞiDBðMMÞjdX ð22Þ

FðFEÞi ¼
Z

Ct

NitdCþ
Z

X
NibdX ð23Þ

FðMMÞi ¼
Z

Ct

/itdCþ
Z

X
/ibdX ð24Þ
where D is the matrix of material constants, and
BðFEÞi ¼
N i;x 0

0 Ni;y

N i;y N i;x

2
64

3
75; BðMMÞi ¼

/i;x 0

0 /i;y

/i;y /i;x

2
64

3
75 ð25Þ
4. Coupling of the meshfree method and FEM

4.1. Transition condition

As shown in Fig. 2, consider a two-dimensional problem domain with a crack. A sub-domain, X(MM),
including the crack is discretized by the meshfree nodes and the other sub-domain, X(FE), uses FEM. These
two domains are joined by a transition domain X(T) that possesses displacement compatibility and force equi-
librium in coupling X(MM) and X(FEM). This means that
uðMMÞk ¼ uðFEÞk ð26Þ
fðMMÞk þ fðFEÞk ¼ 0 ð27Þ
where u(MM)k, u(FE)k, f(MM)k and f(FE)k are displacements and forces at a transition particle k obtained by the
meshfree method in X(MM) and FEM in X(FE), respectively.

It will be ideal to satisfy both the displacement compatibility and the force equilibrium conditions, in which
the displacement compatibility Eq. (26) is the most important and must be satisfied. In addition, because the
meshfree MLSA shape functions lack the delta function properties, it is difficult to directly connect these two
domains.

To satisfy the displacement compatibility condition, two combination techniques, using the hybrid
displacement shape function algorithm [16] and the modified variational form algorithm [17], have been devel-
oped. However, in these techniques, as shown in Fig. 1, a common interface (a curve in the two-dimensional
problem) is used between X(FE) and X(MM). The meshfree nodes and the FEM nodes along this interface coin-
FEM region 

Meshfree region 

Transition region 

Crack Problem 
domain 

Fig. 2. The coupled analysis for the crack problem using the new transition technique.
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cide with each other, and are dependent on each other. It will increase the computational cost and make dif-
ficulty for some problems. In addition, because only an interface curve is used, it is difficult to ensure the com-
patibility (especially the high-order continuity). In the following, we will develop a new transition technique to
ensure a smooth transition between X(FE) and X(MM), which has been successfully used in the macro/micro/
nano multiscale analysis [23].

4.2. Coupling technique

As shown in Fig. 2, there is a transition (or bridge) region, X(T), between the FEM and meshfree domains.
The generalized displacement of a point in the transition domain at x can be defined as
g ¼ uðMMÞðxÞ � uðFEÞðxÞ ð28Þ
where u(MM)(x) and u(FE)(x) are the displacements of a point x, obtained by the interpolations using the mesh-
free nodes and the FEM element, respectively, i.e.,
uðMMÞðxÞ ¼
X

I

UIðxÞuðMMÞI ð29Þ

uðFEÞðxÞ ¼
X

J

NJ ðxÞuðFEÞJ ð30Þ
A sub-functional is introduced to enforce the displacement compatibility condition given in Eq. (26) by
means of Lagrange multiplier k in the transition domain
PðTÞ ¼
Z

XðTÞ

k � gdX ¼
Z

XðTÞ

k � uðMMÞ � uðFEÞ
	 


dX

¼
Z

XðTÞ

k � uðMMÞdX�
Z

XðTÞ

k � uðFEÞdX

¼ PðMMÞ
ðTÞ �PðFEÞ

ðTÞ

ð31Þ
In which, PðMMÞ
ðTÞ and PðFEÞ

ðTÞ are the sub-functional for the meshfree part and the FEM part. Substituting PðMMÞ
ðTÞ

and PðFEÞ
ðTÞ separately into Eq. (17) for the meshfree method and FEM, their generalized functional forms can

be written as
PðMMÞ ¼
Z

XðMMÞ

1

2
eT � rdX�

Z
XðMMÞ

uT � bdX�
Z

CðMMÞt

uT � tdCþ
Z

XðTÞ

k � uðMMÞdX ð32Þ

PðFEÞ ¼
Z

XðFEÞ

1

2
eT � rdX�

Z
XðFEÞ

uT � bdX�
Z

CðFEÞt

uT � tdC�
Z

XðTÞ

k � uðFEÞdX ð33Þ
In these variational formulations, the domains of X(FE) and X(MM) are connected via Lagrange multiplier k,
which can be given by the interpolation functions K and the nodal value of ki
k ¼
X

i

Ki � ki ð34Þ
K is the selected interpolation for ki and it can be the FEM shape function.
Substituting Eqs. (5) and (34) into Eq. (32), and using the stationary condition based on the displacement,

the following meshfree equations can be obtained
KðMMÞ BðMMÞ
	 
 UðMMÞ

k

� �
¼ FðMMÞ
� �

ð35Þ
where K(MM) and F(MM) have been defined in Eqs. (22) and (24), B(MM) is defined as
BðMMÞ ¼
Z

XðTÞ

KUTdX ð36Þ
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Substituting Eqs. (18) and (34) into Eq. (33), and using the stationary condition based on the displacement,
lead to the following FEM equations
KðFEÞ � BðFEÞ
	 
 UðFEÞ

k

� �
¼ FðFEÞ
� �

ð37Þ
where K(FE) and F(FE) have been defined in Eqs. (21) and (23), B(FE) is defined as
BðFEÞ ¼
Z

XðTÞ

KN TdX ð38Þ
It should be mentioned here that it is impossible to solve Eqs. (35) and (37) separately. To obtain the unique
solution for the global problem, using the stationary condition of Eqs. (35) and (37) based on the Lagrange
multiplier and considering the compatibility condition, we can obtain the following relationship,
BT
ðMMÞUðMMÞ � BT

ðFEÞUðFEÞ ¼ 0 ð39Þ
Because the meshfree and FEM domains are connected through the transition domain, the assembly of Eqs.
(35), (37) and (39) yields a linear system of the following form
KðMMÞ 0 BðMMÞ

0 KðFEÞ �BðFEÞ

BT
ðMMÞ �BT

ðFEÞ 0

2
64

3
75

UðMMÞ

UðFEÞ

k

8><
>:

9>=
>; ¼

FðMMÞ

FðFEÞ

0

8><
>:

9>=
>; ð40Þ
Solving Eq. (40) together with the displacement boundary condition, given in Eq. (15), we can obtain the solu-
tion for the problem considered.

To satisfy the force equilibrium condition, the generalized derivative at a point x can be written as
gðxÞ ¼
ouðMMÞðxÞ

ox
� ouðFEÞðxÞ

ox
ð41Þ
Using Lagrange multiplier c, we have
PðTÞðxÞ ¼
Z

XðTÞ

c � gdX

¼
Z

XðTÞ

c � ouðMMÞðxÞ
ox

dX�
Z

XðTÞ

c � ouðFEÞðxÞ
ox

dX

¼ PðMMÞ
ðTÞðxÞ �PðFEÞ

ðTÞðxÞ

ð42Þ
Following the similar procedure from Eqs. (32)–(40), we can obtain the coupling equations to satisfy the high-
order continuity
KðMMÞ 0 BðMMÞ AðMMÞ

0 KðFEÞ �BðFEÞ �AðFEÞ

BT
ðMMÞ �BT

ðFEÞ 0 0

AT
ðMMÞ �AT

ðFEÞ 0 0

2
66664

3
77775
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UðFEÞ
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>>>:

9>>>=
>>>;
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FðMMÞ
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0

0
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>>>:

9>>>=
>>>;

ð43Þ
where
AðMMÞ ¼
Z

XðTÞ

W
oUT

ox
dX ð44Þ

AðFEÞ ¼
Z

XðTÞ

W
oNT

ox
dX ð45Þ
In which W are the interpolation functions for c.
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4.3. Numerical implementations

(a) The size of transition region. The size of transition region will affect the performance of the coupled
method. If the size is too small, it will decrease the accuracy of the transition, especially for the high-order
compatibility. If the size is too big, it will significantly increase the computational cost. For many problems,
it is reasonable to use the following size of transition region:
ht ffi ð3 � 5Þ � dFE or ð3 � 5Þ � dMM ð46Þ
where dFE and dMM are equivalent sizes of FEM element and meshfree nodal space.
(b) The transition particles. To get B(MM) and B(FEM) numerically, the transition region can be divided into
regular background cells, which are similar to those used in the meshfree method. However, these cells are
totally independent of the FE elements and the meshfree background cells. In the practical computation, to
simplify the integration and reduce the ‘‘meshing’’ cost, several layers of transition particles, which are reg-
ularly distributed, can be inserted in the transition domain X(T). The displacement compatibility between
FEM and meshfree nodes is achieved through these transition particles. The advantages of using these tran-
sition particles are clear. First, they allow the meshfree nodes in X(MM) to have an arbitrary distribution and
become independent of the distributions of the FEM nodes in X(FE). Second, the compatibility conditions
in the transition domain can be conveniently controlled through the adjustment of the number and distri-
bution of the transition particles. For some sub-transition domains with stronger compatibility require-
ment, a finer transition particle distribution can be arranged. Third, the compatibility of higher order
derivatives can be easily satisfied.
(c) Lagrange multipliers. The above Lagrange multiplier method is accurate and the physical meaning is
also very clear. However, it will increase the computational cost (especially when the number of transition
particles is large) because new variables (Lagrange multipliers) are added. Hence, we can use the constant
Lagrange multipliers to yield the so-called penalty method, i.e., the common Lagrange multiplier method
can be used to obtain a range of penalty coefficients, and then use them as constants for this problem and
other similar problems to improve computational efficiency.

5. The relay model

With the use of node based interpolation techniques, meshfree methods offer great opportunities to han-
dle problems of complex geometry including cracks. However, there is general discontinuity of displace-
ments across a crack, and the interpolation domain used for the construction of meshfree shape
functions can contain numerous irregular boundary fragments and the computation of nodal weights based
on physical distance can be erroneous. This issue will become more serious in dealing with the fracture
problems, especially for the multi-cracking problems. Several techniques have been reported on the con-
struction of meshfree approximations with discontinuities and non-convex boundaries, including the visibil-
ity method [2], the diffraction method [24], and the transparency method [24]. However, these methods are
only effective for problems with relatively simple domains (e.g., with one or two cracks, or not many non-
convex portions on the boundaries), but not effective for domains with highly irregular boundaries (e.g.,
with many cracks). Liu and Tu [25] have developed a relay model to determine the domain of influence
of a node in a complex problem domain.

The relay model is motivated by the way of a radio communication system composed of networks of relay
stations. Consider an interpolation domain containing a large number of irregular boundary fragments (or
cracks) as shown in Fig. 3, in which O is the interpolation point, P is the field node, and R is the relay point.
The field node, e.g., P2, first radiates its influence in all directions equally, liking a radio signal being broad-
casted at a radio station, until the contained boundaries are encountered. Then its’ influence is relayed through
relay points, e.g., R2-1 and R1-1, to reach the interpolation point O. The distance (called equivalent distance)
between the interpolation point and the field node can then be calculated. In addition, the weight parameter
used in MLSA is measured by the equivalent distance that can be computed based on the relay region defined
by a circle involute. The details for the relay model can be found in Liu [20] and Liu and Tu [25].
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Fig. 3. Relay model for an irregular domain with discontinuous boundaries.
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6. Numerical results and discussions

Several cases of two-dimensional fracture problems have been studied in order to examine the present cou-
pled MM/FE method. Except when mentioned, the units are taken as standard international (SI) units in the
following examples.
6.1. Cantilever beam

The coupled method is first verified by a two-dimensional cantilever beam problem, because its’ analytical
solution is available and can be found in textbooks, e.g., Timoshenko and Goodier [26]. Consider a beam, as
shown in Fig. 4a, with length L and height D subjected to a parabolic traction at the free end. The parameters
y

P (parabolically 
distributed)

x

L

D

a

b

Fig. 4. (a) A cantilever beam subjected to a parabolic traction at the free end and (b) the computational model for the two-dimensional
cantilever beam.
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of the beam are taken as E = 3.0 · 107, m = 0.3, D = 12, L = 48, and P = 1000. The beam has a unit thickness
and a plane stress problem is considered.

As shown in Fig. 4b, the beam is divided into two parts. FEM using the triangular elements is used in the
left part where the essential boundary condition is included. The meshfree method is used in the right part
where the traction boundary condition is included. These two parts are connected through a transition region
that is discretized by 54 regularly distributed transition particles. Fig. 5 illustrates the comparison between the
shear stress calculated analytically and by the coupled method at the cross-section of x = L/2, which shows an
excellent agreement between the analytical and numerical results.

6.2. Near-tip crack field

A well-known near-tip field, which is subjected to a mode-I displacement field at its edges, is analyzed. As
shown in Fig. 6, an edge-cracked square plate is subjected to the following displacement field for a model-I
crack [1].
Fig. 5. Shear stress distributions on the cross-section of the beam at x = L/2.
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Fig. 6. A cracked square plate subjected to mode-I displacement boundary conditions.
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where k is the Kolosov constant.
Hence, the analytical solution for the stress field is given in Eq. (9).
The plate is divided into two parts: the meshfree method is used for the central part, in which the crack

embedded, and FEM is used for other parts. The computational model is plotted in Fig. 7: 441 irregularly
distributed nodes are used in the meshfree domain, 578 triangular FEM elements are used in the FEM
domain, and 210 regularly distributed transition particles are used in the transition domains. Fig. 8 shows
the stress distribution along the crack axis (when h = 0�). Clearly, the prediction of the new developed method
matches the analytical solution very well.
Fig. 7. The computational model for the edge-cracked plate.
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Fig. 8. The distribution of ryy along the axis of the crack (h = 0).
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It should be mentioned that the sole FEM will lead to worse accuracy for this problem, especially for the
stress distributions around the crack tip, because FEM without the enriched basis function usually has bad
accuracy and is difficult to capture the stress singularity near the crack tip. Although using the high-order
FEM elements can partly solve this issue, FEM still has technical difficulty for the fracture problems (espe-
cially the dynamic fracture problems). It has also been proven [12] that the sole meshfree method has much
better accuracy for the crack problem. However, the computational efficiency will be worse if the sole meshfree
method is used. Our studies show that the present coupled method can keep the good accuracy of the meshfree
method for the crack tip field, and, at the same time, it can save much computational cost because of the use of
FEM in the regions far away from the crack tip.
5
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x

y

Fig. 9. An edge square plate subjected to the tension loading.
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Fig. 10. A double-edge square plate subjected to the tension loading.
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6.3. Two edge-cracked plates loaded in tension

An edge-cracked square plate subjected to a uniformed tension of f = 1.0, as shown in Fig. 9, is studied.
The plane strain case is considered, and E = 1000, m = 0.25. The analytical results for KI had been given
by Gdoutos [28] and Ching and Batra [27]. For these parameters used here, the analytical (KI)analytical =
11.2.
Fig. 11. The computational model for the plate with two edge cracks.
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Fig. 12. An edge-cracked plate subjected to the shear loading.
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The computational model is the same as that used in Section 6.2 and shown in Fig. 7. Stress intensity fac-
tors were computed using the domain form of the J-integral. Our study found that the coupled method using
the MLSA with the enriched basis functions makes the J-integral almost domain independent, given to
(KI)numerical = 11.31. Compared with the analytical solution, the coupled method leads to a stable and accurate
result.

A square plate with double edge cracks shown in Fig. 10 is also studied. The computational model in
Fig. 11 contains 705 irregularly distributed nodes in the meshfree domain, 538 triangular FEM elements
in the FEM domain, and 210 regularly distributed transition particles in the transition domains. Ching
and Batra [27] studied the same problem and the analytical KI given by Gdouos [28] is (KI)analytical = 4.65.
Fig. 13. The computational model for the edge-cracked plate subjected to the shear loading.
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Fig. 14. A plate with a ‘‘C’’ shaped center crack.
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Using the J-integral, the present coupled method gives (KI)numerical = 4.75. The coupled method leads to a
very accurate result.

6.4. Shear edge crack

In this example, a clamped plate with an edged crack and subjected to shear traction is considered. The
parameters have been shown in Fig. 12. The material constants used are E = 3.0 · 106 units and t = 0.25. A
plane strain state of deformation is assumed. The reference solution for the stress intensity factors has been
given by Fleming et al. ([12]) and Ching and Batra [27] with KI = 34 and KII = 4.55. Our computational
model in Fig. 13 has 284 irregularly distributed nodes in the meshfree domain, 280 bi-linear FEM elements
in the FEM domain, and 180 regularly distributed transition particles in the transition domains. The present
coupled method works well for this problem and the computational errors are less than 2% for both KI and
KII.
Fig. 15. The computational model for the plate with the ‘‘C’’ shaped center crack.
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6.5. Cracks in a complex shaped plate

Let us now consider a plate of complex shape with a ‘‘C’’ shaped crack. The material constants used are
E = 3.0 · 107 and t = 0.3. One edge of the plate is fixed, one edge is subjected to uniformly distributed tension
load, and the rest edges are traction free. As shown in Fig. 14, the plate is divided into two parts. The meshfree
method is used in the central part including the crack, and FEM is used for other parts. The computational
model shown in Fig. 15 contains 595 irregularly distributed nodes in the meshfree domain, 660 triangular
FEM elements in the FEM domain, and 560 regularly distributed transition particles in the transition
domains. As a reference solution, this problem is also analyzed by the sole meshfree method (the software
of MFree 2D: Liu [20]) with very fine nodal distribution. Fig. 16 shows the distribution of stress, rxx, obtained
by the present coupled method. It is almost identical with the meshfree method result. Table 1 lists the com-
parison of displacements and stress of four points shown in Fig. 14.

Fig. 17 shows the stress distribution along y-axis, and, again, very good agreement is obtained between the
coupled method and the purely meshfree method. The stress concentrations on the crack tips have been clearly
shown with the stress concentration factor around 3.3.

It should be mentioned here that for this problem, the coupled method uses less computational cost than
the pure meshfree method, because we only apply the meshfree method in a very small region (about 10%
of the problem domain) and FEM is used in the other area when FEM has a better computational efficiency
than the meshfree method (Liu and Gu [13]). Hence, the advantage of the present coupled method has been
proven by this example.
Fig. 16. The distribution of rxx.

Table 1
The displacements and stresses for four points in this plate

Displacement Stress

u (·10�7) v (·10�7) rxx ryy sxy

Point A MFree 2D 4.1 3.4 2.31 �0.02 �0.03
The coupled method 3.9 3.2 2.27 �0.017 �0.028

Point B MFree 2D 4.9 2.8 �0.57 �1.6 �0.45
The coupled method 4.7 2.9 �0.61 �1.72 �0.55

Point C MFree 2D 5.3 4.2 �0.56 �1.05 0.36
The coupled method 5.2 4.0 �0.54 �1.01 0.32

Point D MFree 2D 4.5 4.3 3.51 1.13 1.37
The coupled method 4.2 4.2 3.34 1.08 1.32
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Fig. 17. The distribution of rxx and ryy along the y-axis.
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7. Concluding remarks

FEM often has experiences difficulties in fracture mechanics problems because of difficulty in the re-mesh-
ing. Meshfree methods are effective for these crack problems, but they usually have worse computational effi-
ciency. In the analysis of crack problems, we can find that a crack region usually occupies only a small part in
the whole problem domain. It is desirable and beneficial to combine the meshfree methods with FEM in order
to exploit their advantages while evading their disadvantages.

A novel coupled meshfree/FEM method has been developed in this paper for the analysis of crack prob-
lems. In this coupled method, the meshfree method is used only in a sub-domain including the crack and FEM
is employed in the remaining part. Several numerical techniques are developed to ensure the effectiveness for
this coupled method, including:

(a) The transition particles are inserted in the transition domain. Through these particles, a Lagrange mul-
tiplier method is used to ensure the compatibility of displacements and their gradients in the transition.

(b) The relay model is used for the effective construction of meshfree interpolation domains considering the
discontinuous boundaries.

Numerical examples have been studied to demonstrate effectiveness of the present coupled method for
crack problems, and very goods results have been obtained. The coupled method holds the advantages of both
the FEM and meshfree methods including: (1) a lower computation cost; (2) a good accuracy; (3) the enhanced
compatibility in the transition domain between the FEM domain and meshfree domain. Hence, it has been
proven that the new coupled method is effective and robust for the analysis of fracture mechanics problems,
and it has very good potential to become a powerful numerical tool.
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