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a b s t r a c t

This review paper discusses some basics in using continuum mechanics and molecular dynamics to char-
acterize the deformation of single-walled carbon nanotubes (SWCNTs). It identifies that the van der Waals
force between SWCNTs in a bundle distributes symmetrically and influences the bundle formation, and
that to avoid misleading results from a molecular dynamics simulation, the interaction potential, ther-
mostat scheme and simulation parameters must be carefully selected. The paper then points out that
when the necessary condition proposed by Vodenitcharova and Zhang and a compatibility condition for
elastic constants are satisfied, the intersect of the bending and in-plane stiffness curves in the modulus-
thickness plane can determine a unique effective wall thickness of an SWCNT and hence its Young’s
modulus.

© 2008 Elsevier B.V. All rights reserved.
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. Introduction

Since the discovery of carbon nanotubes, extensive investiga-
ions have been carried out on both single-walled and multi-walled
anotubes. A research focus in the field has been to charac-
erize precisely the mechanical properties of nanotubes using
arious methods including continuum mechanics and molecular
ynamics modelling, and to understand the chemical reactivity

f nanotubes with a class of matrix materials for stronger inter-
ace stress transfer capabilities. Developing efficient techniques for
abricating ceramic-based (Arsecularatne and Zhang, 2007) and
olymer-based (Mylvaganam and Zhang, 2007) nanocomposites
ith tailored microstructures has also been emphasized recently.

∗ Tel.: +61 2 9351 2835; fax: +61 2 9351 7060.
E-mail address: L.Zhang@usyd.edu.au.

924-0136/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.jmatprotec.2008.10.024
There are some basic mechanics issues that have not been clar-
ified and have caused confusions in the research community, such
as the determination of wall thickness of nanotubes, their mechan-
ical property assessment, and the reliable application of molecular
dynamics.

This review paper will discuss these mechanics issues of single-
walled carbon nanotubes (SWCNTs).

2. Mechanics modelling of SWCNTs

Under external loading, a carbon nanotube has been found to
deform like a continuum structure and has both membrane and
bending capacities. Hence, it will be beneficial if equivalent con-

tinuum theories can be established for analysing their mechanical
behaviour. This has led to extensive studies on the equivalent or
effective properties and geometrical dimensions of a carbon nan-
otube.

http://www.sciencedirect.com/science/journal/09240136
http://www.elsevier.com/locate/jmatprotec
mailto:L.Zhang@usyd.edu.au
dx.doi.org/10.1016/j.jmatprotec.2008.10.024
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.1. Effective wall thickness and Young’s modulus

To characterize the mechanical properties of a carbon nanotube,
ne often directly uses the mechanics quantities defined by con-
inuum mechanics, such as Young’s modulus. However, a carbon
anotube has a discrete molecular structure and its ‘wall’ comprises
f only a number of atoms, and hence does not have continuous spa-
ial distribution. Nevertheless, to calculate the Young’s modulus of
carbon nanotube, one needs to know the wall thickness of the

ube. For example, in a simple tensile loading, the Young’s modulus
of a single-walled carbon nanotube is defined as E = �/ε where ε

s the strain, and � is the axial stress applied on the tube calculated
y F/(2�Rh) in which R is the radius of the mid-surface of the tube,
is the tube thickness and F is the axial force applied. Although
may be reasonably defined as the imagined surface radius of a

anotube through the theoretical centers of the atoms, h does not
xist because a nanotube does not have a continuous wall. In the
iterature, mechanics modelling has been based on unreasonable
ssumptions of h. For example, some researchers treated a carbon
anotube as a solid beam (Wong et al., 1997), or a solid cylinder
Govindjee and Sackman, 1999), and some others simply let h be
he inter-planar spacing of two graphite layers (=3.4 Å) (Yu et al.,
000; Krishnan et al., 1998). As a result, the Young modulus of a
arbon nanotube calculated with different h values varies in a wide
ange.

Vodenitcharova and Zhang (2003) introduced a concept of
n effective wall thickness under the umbrella of continuum
echanics. Based on the consideration of force equilibrium and

quivalence, they proposed a necessary condition that the effective
all thickness must be smaller than the theoretical diameter of a

arbon atom (∼0.142 nm). Their argument is that a cross-section
f a nanotube contains only a number of atoms and the forces in
he tube are transmitted through these atoms; but in a continuum

echanics model the same forces are transmitted through a con-
inuous wall. Because of this, the effective wall thickness cannot
e greater than or equal to the theoretical diameter of a carbon
tom; as otherwise, the tube equilibrium cannot be maintained.
odenitcharova and Zhang (2003) then proposed, using an elastic
ing theory and the results from molecular dynamics analysis by
ang et al. (2000), that the effective thickness of a single-walled
arbon nanotube should be h ≈ 0.617 Å, which is about 44% of the
heoretical diameter of a carbon atom, and that the effective Young’s

odulus E of the tube is ∼4.88 TPa.
In an attempt to address the continuum-atomic modelling issue,

hang et al. (2002, 2004) directly linked interatomic potential
nd atomic structure of an SWCNT with a continuum constitutive
odel, by equating the strain energy stored in the equivalent consti-

utive model to that in atomic bonds described by Tersoff–Brenner
otential. This method seems to be reasonable because the
ersoff–Brenner potential has been shown to be appropriate for
nalysing SWCNTs (Mylvaganam and Zhang, 2004). An isotropic
onstitutive model was therefore derived for SWCNTs subjected
o in-plane deformation with two elastic constants, the in-plane
tiffness, Kin-plane, and the in-plane shear stiffness, Kshear. Then the
ollowing relationship was obtained by comparing the two elastic
onstants of SWCNTs with their counterparts of three dimensional
3D) thin shells of thickness h:

in-plane = Eh

1 − �2
and Kshear = Gh (1)

here G = E/2(1 + �) is shear modulus and � is Poisson’s ratio of SWC-

Ts which can be obtained from Kin-plane/Kshear = (1 − �)/2. However,

he effective thickness of SWCNTs cannot be determined in this way
ecause only in-plane deformation is considered.

Huang et al. (2006) considered both the in-plane and off-
lane deformation of SWCNTs. By using the Tersoff–Brenner
Technology 209 (2009) 4223–4228

potential, V, and the modified Cauchy–Born rule, they obtained
two-dimensional isotropic constitutive relations, where bending
stiffness, Dbending, and off-plane torsion stiffness, Dtorsion, as well as
Kin-plane and Kshear of SWCNTs were calculated as:

Dbending =
√

3
2

(
∂V

∂ cos �ijk

)
, Dtorsion = 0,

Kin-plane = 1

2
√

3

[(
∂2V

∂r2
ij

)
0

+ A

8

]
, Kshear = A

16
√

3
(2)

in which �ijk (k /= i, j) is the angle between bonds i–j and i–k, rij
is the i–j bond length, and A is a function of the first- and second-
order derivatives of V with respect to rij, �ijk and �ijl (l /= i, j, k). In
this derivation, the bending of SWCNTs was considered as a result of
the �-bond angle change while the off-plane torsion was assumed
to be independent of the deformation of the �-bonds.

However, if we use a three-dimensional continuum thin shell
theory, where bending and off-plane torsion are due to the
deformation across the wall thickness, we will have a different
observation about the deformation mechanics of SWCNTs, because
Dbending and Dtorsion of a three-dimensional thin shell are related to
the shell thickness h and the in-plane material constants by

Dbending = Eh3

12(1 − v2)
and Dtorsion = Gh3

12
(3)

Combining Eqs. (1) and (3) leads to the following condition:

Dbending

Kin-plane
= Dtorsion

Kshear
= h2

12
(4)

The above derivation indicates that to establish a three-dimensional
elastic shell model with a defined effective thickness for SWCNTs,
the key is to satisfy condition (4) when the corresponding elas-
tic constants are obtained based on an atomistic potential that
accounts for the atomic structure and the deformation mechanisms
of SWCNTs. Nevertheless, Eq. (2) was obtained from potential V with
Dtorsion = 0, which cannot satisfy condition (4) and hence leads to an
ill-defined effective thickness of SWCNTs.

To obtain a deeper understanding without the influence of the
currently debatable wall thickness and Young’s modulus, Wang and
Zhang (2008a) employed in-plane stiffness Kin-plane, Poisson’s ratio
�, bending stiffness Dbending and off-plane torsion stiffness Dtorsion
as independent elastic constants in their mechanics solution to the
free vibration of SWCNTs. They found that the off-plane torsion stiff-
ness cannot be zero which is in agreement with molecular dynamics
results and experimental measurements in the literature, and that
the effective thickness and Young’s modulus are about 0.1 nm
and 3.55 TPa, respectively, for (10, 10) SWCNTs. Wang and Zhang
(2008b) then made an interesting analysis by plotting the diverse
values of Young’s modulus and wall thickness in the literature on
a single diagram, as shown in Fig. 1. They found that those satisfy
Vodenitcharova–Zhang’s necessary condition (Vodenitcharova and
Zhang, 2003) collapse very nicely into the curve of constant in-plane
stiffness = 363 J/m2. It means that there is something in common in
predicting the mechanical properties of SWCNTs when using differ-
ent methods, although the values of Young’s modulus and effective
wall thickness still scatter and the experimentally measured prop-
erties available correspond to different Kin-plane values.

As discussed above, if an SWCNT is modelled as a 3D
isotropic shell, the elastic constants of the shell must satisfy
Dbending/Kin-plane = Dtorsion/Ktorsion, which reflects the bending mech-

anism of a continuum shell and ensures the existence of an effective
thickness. On the other hand, the deformation of SWCNTs in atom-
istic models is caused by the changes in chemical bonds between
neighbouring atoms. Thus, if the Kin-plane, Ktorsion, Dbending and Dtorsion
given by an atomistic theory cannot satisfy the above condition, this
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Fig. 1. A comparison of the scattered values of effective wall thickness and Young’s
modulus of SWCNTs in the literature. Dots numbered are from the papers listed
below. 1: Zhang et al. (2002); 2: Zhou et al. (2000); 3: Wang et al. (2005); 4:
Vodenitcharova and Zhang (2003); 5: Pantano et al. (2004); 6: Tu and Ou-Yang
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bundle, where each dot represents a carbon atom on the cross-
section of the bundle. It is clear that the central SWCNT has been
deformed significantly into a symmetrical faceting shape.

The initial van der Waals interaction energy of the circular tubes
in a bundle is very small (2–4 meV/atom). This is in agreement
2002); 7: Kudin et al. (2001); 8: Wang and Zhang (2008a); 9: Sears and Batra (2004);
0: Lu (1997); 11: Li and Chou (2003); 12: Yao and Lordi (1998); 13: Ozaki et al.
2000); 14: Belytschko et al. (2002); 15: Hernández et al. (1999); 16: Jin and Yuan
2003); 17: Krishnan et al. (1998); 18: Tombler et al. (2000).

tomistic model cannot give rise to a consistent effective thickness
nd an effective Young’s modulus. Based on this Zhang and Wang (in
ress) concluded that if condition Dbending/Kin-plane = Dtorsion/Ktorsion
nd the Vodenitcharova–Zhang’s necessary condition are satis-
ed at the same time, the intersect of the Dbending and Kin-plane
urves in the E–h plane determines a unique h and a correspond-
ng E. They therefore proposed the following sufficient condition
or determining the effective thickness h of an SWCNT: “The h
nd E values can be determined by the intersect of the Dbending
nd Kin-plane curves in the E–h plane by a continuum or an atom-
stic model, when condition Dbending/Kin-plane = Dtorsion/Ktorsion and the
odenitcharova–Zhang’s necessary condition are satisfied at the same
ime”.

.2. Mechanics of bundle formation

A clear understanding of the CNT bundle formation is of impor-
ance to the fabrication of CNT ropes or fibres. Lopez et al. (2001),
harlier et al. (1996) and Tersoff and Ruoff (1994) have shown
hat individual SWCNTs in a bundle are already deformed in an
xternally unstressed state due to the intertubular van der Waals
orces. The SWCNTs are flattened, the lattice constant decreases
nd the distance between the SWCNTs, called equilibrium dis-
ance d, becomes smaller than the equilibrium distance between
wo graphite layers (3.42 Å). At a distance equal to d, the resultant
orces of interaction between the neighbouring SWCNTs are zero;
t a distance larger than d the nanotubes attract each other; and
t a distance smaller than d the intertubular interaction becomes
epulsive. Tersoff and Ruoff (1994) found that the faceting of the
WCNTs in a bundle is radius-dependent: the cross-sectional dis-
ortion of SWCNTs becomes noticeable when their radii are large.
ince the bundle polygonization is caused by van der Waals forces,
t would be interesting to know their magnitude, distribution and

heir dependence on the SWCNT radius.

Vodenitcharova and Zhang (2004) analysed a zigzag SWCNT
undle by combining molecular dynamics and continuum mechan-

cs. They consider the deformation of the central SWCNT in a long
undle under the van der Waals forces p(�), as illustrated in Fig. 2.
Fig. 2. The central SWNT in a bundle and the notations used in the continuum
mechanics model.

According to the thin shell theory, a point on the mid-surface of
the nanotube can undergo displacements in the longitudinal, cir-
cumferential and radial directions, i.e., u, v and w, measured from
the undeformed geometry. Zero displacements correspond to an
isolated SWCNT with no forces acting on it. Since the length of an
SWCNT in a bundle is much greater than its diameter and the van
der Waals forces along the SWCNT axis can be considered uniform,
the SWCNT can be modelled as a ring of unit length under plane-
strain deformation with the longitudinal displacement u neglected.
The remaining displacements are the radial displacement w (pos-
itive outward) and the tangential displacement v (positive in the
direction of positive �, Fig. 2). Using the ring theory of continuum
mechanics, Vodenitcharova and Zhang (2004) obtained an analyti-
cal solution which shows the following deformation features of an
SWCNT in a bundle.

Fig. 3 shows the typical deformation pattern of a (36, 0) SWCNT
Fig. 3. Cross-sectional view of the deformed (36, 0) SWNT bundle obtained by the
MD simulation. The coordinate unit is Å.
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curves and necking processes, as shown in Figs. 5 and 6. We
Fig. 4. The van der Waals force distribution on an SWNT.

ith the results reported by Lopez et al. (2001). The strain energy
nduced during flattening was calculated as the difference in the

inimum total energy of the bundle and the total energy of the iso-
ated undeformed nanotubes. It was found that the strain energy
aries from 8.3 meV/atom for a nanotube with a radius of 7.05 Å
o 7.2 meV/atom for a nanotube with a radius of 14.1 Å. Obviously,
he strain energy decreases with the increase in radius, indicating
hat more energy is required to deform nanotubes of smaller radii.
he circumferential displacement v is negligible compared with the
adial displacement w, demonstrating that during the bundle for-
ation the nanotube atoms displace predominantly in the radial

irection. Furthermore, the van der Waals forces p(�) are attractive
negative sign means attraction) and attain their maximum value
max in the channels (see Fig. 4) where the attraction between the
eighbouring atoms of adjacent nanotubes is more significant, and
heir minimum value pmin at the points of minimum intertubu-
ar distance where the attraction is small. The radial displacement
s outward even at the shortest distance between the SWCNTs.
or radii greater than 11 Å, the non-uniform inward displacement
ominates at the points of minimum intertubular distance. The
undle formation of larger nanotubes is associated with a lower

ntensity of the attractive van der Waals forces, but the values of
oth pmin and pmax are significant. For the nanotube radii consid-
red, pmax varies from −6 to −11 GPa and pmin varies from −1 to
5 GPa.

. Molecular dynamics modelling

Molecular dynamics simulation has been widely used in char-
cterising the mechanical properties of materials (Zhang, 2006)
nd in understanding their mechanisms of deformation on the
anometre scale (Zhang and Mylvaganam, 2006). However, the
imulations must be done carefully to best represent the real-
ty. First, it is important to select an appropriate interaction
otential that can effectively describe the deformation of a nan-
tube correctly. Secondly, during a loading process, improper

reatment of temperature rise can lead to fictitious results. In

olecular dynamics, heat conduction is accomplished via the so-
alled thermostat atoms using a thermostatting method. Adiabatic
elaxation method, isokinetic-thermostatting, Andersen stochas-
ic thermostatting and Nose-Hoover feed back thermostatting are
Technology 209 (2009) 4223–4228

some typical methods for temperature conversion. For small sys-
tems, the adiabatic relaxation method can lead to a fluctuation
of the vibrational-relaxation rate. In isokinetic-thermostatting, the
temperature is maintained in different ways. For example, in the
Berendsen thermostat scheme with velocity scaling, the velocities
of thermostat atoms are scaled to fix the total kinetic energy. In
the Gaussian feedback or Evans-Hoover scheme with force scal-
ing, however, the kinetic energy is monitored and information is
fed back into the equations of motion so that the kinetic energy
is kept constant to dissipate heat by controlling the thermostat-
ting force. Velocity scaling (Zhang and Tanaka, 1997, 1999) has
been widely used because of its simplicity in implementation. For
small time steps, the Gaussian isokinetic method and velocity scal-
ing method become identical (Arsecularatne and Zhang, 2007).
However, a very small time step will give an unusually high elon-
gation speed. On the other hand, a small displacement step with a
small time step will be computationally expensive. The flaw in the
isokinetic-thermostatting method is that it is impossible to sep-
arate the effects of thermostatting on rate processes. The other
two schemes also have this limitation to a certain extent. Thirdly,
a system has to be relaxed initially as well as during the sim-
ulation so that the velocities of the Newtonian and thermostat
atoms reach equilibrium at the specified temperature of simula-
tion; thus appropriate time step and displacement step have to
be selected to get a reasonable elongation speed. A natural ques-
tion is therefore: Which simulation scheme will be appropriate
and effective for simulating the deformation of carbon nanotubes?
Mylvaganam and Zhang (2004, 2005) have investigated some nec-
essary details that are central to a reliable simulation, such as the
selection of potential, number of thermostat atoms, thermostat
method, time step, displacement step and the number of relaxation
steps.

Consider a single-walled armchair nanotube (10, 10) with 100
repeat units along the axial direction and a zigzag nanotube (17,
0) with 58 repeat units along the axial direction, both having a
length of about 245 Å. The interatomic forces will be described by
the Tersoff (T) potential and the empirical bond order potential – the
Tersoff–Brenner (TB) potential. The simulations will be carried out
at 300 K with Berendsen (B) and Evans-Hoover (EH) thermostats
and a time step of 0.5 fs. To examine the reliability of the simula-
tions, Mylvaganam and Zhang (2004) carried out the analysis using
the following schemes:

• Scheme 1 (S1): In this scheme, the first two layers of atoms on both
ends of a carbon nanotube were held rigid. The next four layers
were taken as thermostat atoms and the remaining were treated
as Newtonian atoms. First, the tubes were annealed at the simu-
lation temperature for 5000 time steps. Then the rigid atoms on
both ends were pulled along the axial direction at an increment of
0.05 Å. After each displacement step, 1000 relaxation steps were
done to dissipate the effect of preceding displacement step over
the entire length of the tube.

• Scheme 2 (S2): In this scheme, all atoms except the boundary ones
rigidly held were treated as thermostat atoms. 50 relaxation steps
were carried out after each displacement step.

Mylvaganam and Zhang (2004) found that simulation param-
eters have a remarkable influence on the results. For example,
different schemes lead to significantly different stress–strain
can therefore conclude that a simulation using Tersoff–Brenner
potential and Berendsen thermostat with all atoms as thermo-
stat atoms (except the rigid ones) with 50 relaxation steps after
each displacement of 0.008 Å is a reliable and cost effective
method.
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Fig. 5. The stress–strain curves of (a) a (10, 10) armchair SWCNT and (b) a (17, 0)
zigzag SWCNT using Tersoff and Tersoff–Brenner potentials. In the figure, TB(B-S1)
is the calculation with Berendsen thermostat using Scheme 1, TB(B-S2) is that with
Berendsen thermostat using Scheme 2, and TB(B-S3) is that as in TB(B-S2) but with
a smaller displacement step of 0.008 Å. TB(EH) is the calculation with the Evans-
Hoover thermostat.

Fig. 6. Deformation of an SWCNT when using Berendsen thermostat: (a) an arm-
c
n

4
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carbon nanotubes. Nanotechnology 19, 195704.
Wang, L.F., Zheng, Q.S., Liu, J.Z., Jiang, Q., 2005. Size dependence of the thin-shell
hair tube, (b) a zigzag tube and (c) necking that propagates along a zigzag carbon
anotube.

. Concluding remarks

We have discussed some fundamentals of the mechanics of
WCNTs, including the determination of the effective wall thickness
or continuum mechanics modelling, and some basics for reliable
olecular dynamics simulations. It is clear that studies along the
ine are far from sufficient, particularly in the areas of modelling
sing continuum mechanics, and the coupled approach using both
D and continuum mechanics.
Technology 209 (2009) 4223–4228 4227

In the literature, there are different views on the mechanical
characterisation of CNTs. For instance, some researchers think that
there is no need to clarify the effective wall thickness and Young’s
modulus of CNTs, because one may use other parameters in a spe-
cific application, e.g., using bending stiffness. The author believes
that the effective wall thickness and Young’s modulus are the most
fundamental mechanics quantities for modelling using the well-
established continuum mechanics theory. Bypassing the basics in
case-studies cannot verify, at the grassroots level, the applicability
of continuum mechanics theory to nano-analysis.
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