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Abstract
This paper proposes a two-dimensional elastic shell model to characterize the deformation of
single-walled carbon nanotubes using the in-plane rigidity, Poisson ratio, bending rigidity and
off-plane torsion rigidity as independent elastic constants. It was found that the off-plane
torsion rigidity of a single-walled carbon nanotube is not zero due to the off-plane change in the
π -orbital electron density on both sides of the nanotube. It was concluded that a
three-dimensional elastic shell model of single-walled carbon nanotubes can be established with
well-defined effective thickness.

1. Introduction

Continuum mechanics modeling [1–5], numerical analy-
sis [1, 6–8] and experimental characterization [9, 10] have
been widely used for understanding the properties of car-
bon nanotubes (CNTs). The good agreement achieved be-
tween continuum models and simulations/experiments seems
to show that continuum mechanics models are applicable to
CNTs [1, 5, 11–15]. However, their validity has not been
fully verified in terms of the relationship between the molecular
structure of single-walled CNTs (SWCNTs) and their equiva-
lent continuum characteristics. A typical example is that the
obtained effective thickness of SWCNTs varies from 0.0617
to 0.69 nm [1, 4, 16–31]. According to Vodenitcharova–
Zhang’s criterion based on the concept of force equilibrium
and equivalence [4], the effective thickness of SWCNTs should
be smaller than the theoretical diameter of carbon atoms,
which is about 0.142 nm [32]. Thus those greater than
0.142 nm [16, 17, 19, 21, 23, 24, 26–29] are unreasonable,
while others below 0.142 nm [18, 20, 22, 25, 30, 31] are possi-
ble, but their validity needs to be confirmed.

In an attempt to address the continuum–atomic model-
ing [33–37], Zhang et al [38, 39] directly related the inter-
atomic potential of an SWCNT to a continuum model by equat-
ing the strain energy in the equivalent continuum model to that
in atomic bonds. An isotropic constitutive model was derived
for SWCNTs subjected to in-plane deformation with the in-
plane rigidity, Kextension, and the in-plane shear rigidity, Kshear.
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By comparing Kextension and Kshear of SWCNTs with their
counterparts of three-dimensional (3D) thin shells [40, 41] with
thickness h, it is easy to obtain the following relationships:

Kextension = Eh

1 − ν2
and Kshear = Gh, (1)

where E is the Young’s modulus, G = E/2(1 + ν) is the
shear modulus, and ν is the Poisson ratio. Therefore, ν

can be obtained from Kextension
Kshear

= 2
1−ν

. These studies seem
to have demonstrated a promising approach to establishing a
continuum SWCNT model.

Recently, Huang et al [42] took one step forward
to consider both in-plane and off-plane deformations of
SWCNTs. Using the Tersoff–Brenner potential [43, 44],
which was shown to be appropriate for SWCNTs [45], and
the modified Cauchy–Born rule [38, 39], they obtained two-
dimensional (2D) isotropic constitutive relations for SWCNTs
controlled by Dbending (bending rigidity), Dtorsion (off-plane
torsion rigidity), Kextension and Kshear. The authors explained
that the deformation of SWCNTs was solely caused by the
changes of their in-plane σ bond. In particular, Dbending is
due to the energy increase via the σ -bond angle change, while
Dtorsion is independent of the σ -bonds, and thus vanishes.

However, a 3D thin shell theory [40, 41] gives very
different deformation mechanisms of SWCNTs modeled as
3D shells where off-plane deformations, i.e., bending and off-
plane torsion, are realized via the in-plane deformation across
the wall thickness. Accordingly Dbending and Dtorsion of a 3D
shell are related to its thickness h and the material constants
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by [40, 41]

Dbending = Eh3

12(1 − ν2)
and Dtorsion = Gh3

12
. (2)

Combining equations (1) and (2) leads to the following
equations:

Dtorsion

Dbending
= Kshear

Kextension
= 1 − ν

2
or

Dbending

Kextension
= Dtorsion

Kshear
= h2

12

(3)

which gives the existence condition of a 3D isotropic shell
model with well-defined effective thickness for SWCNTs.
In other words, the existence of a 3D shell model is not
guaranteed, as assumed previously. Instead, it is entirely
determined by whether the values of elastic constants obtained
in atomistic models or experiments can meet the requirements
of equation (3). For example, in [42], Dtorsion was reported
to be zero, which cannot satisfy equation (3), and thus leads
to an effective thickness of SWCNTs varying with loading
conditions [42]. This conclusion challenges the validity of
3D shell models for SWCNTs. It is therefore necessary to
clarify the issue to see if Dtorsion is zero and, more importantly,
whether a 3D shell model with well-defined thickness will be
applicable to SWCNTs. To achieve these goals, we propose
a 2D shell model for SWCNTs in the present work, which
is independent of debatable values of the effective thickness
and all the classic formulae (1)–(3) for a 3D shell. This
model offers an efficient tool to extract the values of elastic
constants for SWCNTs via the 2D shell-model–discrete-model
fitting, and thus enables us to examine the issue regarding
the definition of the effective thickness and the existence of a
3D continuum model for SWCNTs. Similar to the previous
3D shell models for SWCNTs [11, 13, 46], the present 2D
elastic shell also uses bending rigidity and in-plane rigidity
to avoid the application of the concept of effective thickness.
By comparing our results with the discrete models of phonon
dispersion relations of SWCNTs corresponding to Dbending and
Dtorsion, we found that the vibration behavior of SWCNTs
predicted by the discrete models can be reasonably reproduced
by our 2D thin shell model with a nonzero off-plane torsion
rigidity of Dtorsion ≈ 0.8 eV. Furthermore we found that this
2D model becomes equivalent to a 3D elastic shell when the
effective thickness of a (10, 10) SWCNT is h ≈ 0.1 nm.

2. Modeling: formulation, comparison and
discussion

2.1. Model formulation

To resolve the problems regarding the definition of effective
thickness of SWCNTs and the existence of a 3D shell model
for SWCNTs we shall avoid using the controversial effective
thickness of SWCNTs by visualizing SWCNTs as 2D isotropic
shells formed by rolling up 2D, almost isotropic graphite
sheets. Such 2D shells are different from classical 3D
shells [40, 41] in that Dbending, Dtorsion, Kextension, and Kshear

governing their constitutive relation (e.g., equation (5.9) of [41]
with Dbending(1 − ν) replaced by 2Dtension) are independent
parameters not necessarily related to the specific thickness via
classical formulae (equations (1) and (2)), and thus do not have
to satisfy equation (3). Substituting such constitutive relations
into the equations of motion (e.g., equation (5.2) of [41]) leads
to the following equations for free vibration of SWCNTs of
radius R and mass density per unit area ρ.

R2 ∂2u

∂x2
+ 1 − ν

2

∂2u

∂ϕ2
+ R(1 + ν)

2

∂2v

∂x∂ϕ
− νR

∂w

∂x

= ρ

Kextension
R2 ∂2u

∂ t2

R

2
(1 + ν)

∂2u

∂x∂ϕ
+ R2

2
(1 − ν)

∂2v

∂x2
+ ∂2v

∂ϕ2
− ∂w

∂ϕ

+ Dbending

Kextension

(
Dtorsion

Dbending

∂2v

∂x2
+ ∂2v

R2∂ϕ2

)

+ Dbending

Kextension

(
∂3w

R2∂ϕ3
+

(
Dtorsion

Dbending
+ ν

)
∂3w

∂x2∂ϕ

)

= ρ

Kextension
R2 ∂2v

∂ t2

νR
∂u

∂x
+ ∂v

∂ϕ
− w − Dbending

Kextension

[
R2 ∂4w

∂x4
+ 2

(
Dtorsion

Dbending
+ ν

)

× ∂4w

∂x2∂ϕ2
+ 1

R2

∂4w

∂ϕ4

]
− Dbending

Kextension

[(
2Dtorsion

Dbending
+ ν

)

× ∂3v

∂x2∂ϕ
+ 1

R2

∂3v

∂ϕ3

]
= ρ

Kextension
R2 ∂2w

∂ t2
(4)

where x and ϕ are the axial coordinate and circumferen-
tial angular coordinate, u v and w are longitudinal, cir-
cumferential and (inward positive) radial displacements, and
t is time. For simply supported ends the solution to equa-
tion (4) reads u(x, θ, t) = U cos kx x cos nθeiωt , v(x, θ, t) =
V sin kx x sin nθeiωt , w(x, θ, t) = W sin kx x cos nθeiωt , where
U , V and W are the vibration amplitudes, kx is the wavevec-
tor in the x-direction, n is the circumferential wavenumber and
ω is angular frequency related to frequency f by ω = 2π f .
The condition of nonzero solution of (U , V , W ) gives the vi-
bration frequencies and associated modes for SWCNTs. Here,
it is noted that in previous studies [1, 16–23, 25, 30, 47–49]
the values of Kextension obtained mainly fall in a range of
330–363 J m−2 and ν varies from 0.14 to 0.34. Thus, in the
present work it is reasonable to adopt Kextension = 350 J m−2

and ν = 0.2 for SWCNTs.

2.2. Model comparison and discussion

In what follows, we shall compare the 2D shell model with
available atomistic models for vibration spectra of SWCNTs to
(1) validate the values of Kextension and ν used here, (2) extract
the values of Dtension and Dbending, and (3) finally clarify the
aforementioned issues based on equation (3). In doing so, let
us first examine the sensitivity of different vibration modes of
SWCNTs to their elastic constants. The results for a (10, 10)
SWCNT are shown in figure 1 with Dbending = 2 eV [14] and
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(a) (b) (c)

Figure 1. The phonon spectrum of a (10, 10) SWCNT given by the 2D elastic shell model with Dbending = 2 eV and Dtorsion = 0 (dashed
lines), 0.8 eV (solid lines) and 1.2 eV (dotted lines). The axisymmetric radial (R), longitudinal (L) and torsional (T ) vibration modes with
n = 0 and beam-like bending mode (B) with n = 1 are shown in (a) and the circumferential modes with n = 2–5 are displayed in (b) and (c).

(a) (b) (c)

Figure 2. The phonon spectrum of a (10, 10) SWCNT given by the 2D elastic shell model with Dtorsion = 0.8 eV and Dbending = 1.5 eV
(dashed lines), 2 eV (solid lines) and 2.5 eV (dotted lines). The axisymmetric radial (R), longitudinal (L) and torsional (T ) vibration modes
with n = 0 and beam-like bending mode (B) with n = 1 are shown in (a) and the circumferential modes with n = 2–5 are displayed in (b) and
(c).

Dtorsion = 0, 0.8, 1.2 eV, and figure 2 with Dtorsion = 0.8 eV
and Dbending = 1.5, 2, 2.5 eV. Figures 1(a) and 2(a) show that
the axisymmetric radial (R), longitudinal (L) and torsional (T )
modes (n = 0), and beam-like bending mode (B) (n = 1)
of SWCNTs are governed by Kextension and ν (or Kshear) but
are independent of Dtorsion and Dbending. Thus, these vibrations
are ideal for validation of the values of Kextension and ν chosen
in the present work. For the vibration modes with n = 2–5,
figures 1(b) and (c), and 2(b) and (c) indicate that at kx = 0 the

vibration frequencies are primarily determined by the value of
Dbending, while at kx > 0 the strong effects of both Dbending and
Dtorsion are observed. In view of these results, the vibrations
with n = 2–5 can be efficiently used to uniquely determine
the values of Dtorsion and Dbending for SWCNTs. With these
results we are now ready to perform our analysis via the 2D
shell-model–discrete-model fitting.

So far a variety of approaches have been adopted to
calculate vibration spectra for SWCNTs [14, 48–57]. The
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Figure 3. The comparison of the 2D elastic shell model (solid thin lines) with (a) the lattice dynamics model (solid coarse lines) in [49],
(b) the continuum model (dotted lines) in [51], (c) the lattice dynamics model (dotted lines) in [54], (d) the force constant model (dotted lines)
in [50], (e) the lattice dynamics model (dotted lines) in [52] and (f) the lattice dynamics model (dotted lines) in [55] for axisymmetric R, L , T
modes with n = 0 and B modes with n = 1 of a (10, 10) SWCNT.

studies on a (10, 10) SWCNT given by a force constant
model [50], lattice dynamic models [49, 52, 54, 55], and a
continuum model [51] provide detailed results and enable us to
compare them with the present shell model for low-frequency
vibrations of SWCNTs with long wavelength. It is seen from
figure 3 that as far as the asymmetric R, L and T modes with
n = 0 are concerned, the present shell model is consistently in
good agreement with the six existing models [49–52, 54, 55],
which justifies the values of Kextension and ν used in the present
model. Subsequently, for the vibrations with n = 2–5, which
are very sensitive to Dtorsion and/or Dbending, we found that the
best fit of the present shell model to the six existing models
leads to unique values of Dbending ≈ 2 eV and Dtorsion ≈ 0.8 eV.
For example, in figure 4, at kx = 0 where the frequency
is determined predominantly by Dbending, the 2D shell model
with Dbending = 2 eV is very close to all the six existing
models [49–52, 54, 55]. In addition, if, at the same time,
Dtorsion is taken as 0.8 eV the 2D shell model matches well with
the two lattice dynamics models [49, 54] and the continuum
model [51] at kx > 0 and n = 2–5 (figures 4(a)–(c)), and
the force constant model [50] and other two lattice dynamics
models [52, 55] at kx > 0 and n = 4–5 (figures 4(d)–
(f)). On the other hand, in figures 3(d)–(f) and 4(d)–(f), a
notable difference of the present shell model is observed from
the latter three atomistic models [50, 52, 55] at kx > 0 and

n = 1–3. Suzuura et al [51] first noticed such discrepancy
between their continuum model [51] and the force constant
model [50], and explained it as a result of the inappropriate
values of force constants used in [50]. Later, Gartstein [54]
further examined this issue, and showed that for vibrations
with n = 1–5 his lattice dynamics model, which is irrelevant
to the issue of force constant adjustment, agrees well with
Popov et al’s lattice dynamics model [49] and Suzuura et al’s
continuum model [51]. This is also well echoed by the present
study in figures 3(a) and (c), and 4(a) and (c).

These results clearly show that the present 2D elastic shell
model can be efficiently used to give a reliable description for
low-frequency vibrations of SWCNTs with long wavelength.
The model is valid for individual SWCNTs, no matter what the
specific values of the four elastic constants are. Hence, it offers
an efficient way to determine the elastic constants for SWCNTs
through curve fitting and enables us to examine the long-
standing issue regarding the effective thickness of SWCNTs.
Specifically, based on the results obtained in the present work,
the bending rigidity Dbending of SWCNTs is found to be about
2 eV and the off-plane torsion rigidity Dtorsion is around 0.8 eV.
It is noted that this value of Dtorsion is close to the values given
by a local density approximation theory [22] but very different
from the vanished Dtorsion obtained in [42]. In particular,
with Kextension = 350 J m−2, ν = 0.2, Dbending = 2 eV
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Figure 4. The comparison of the present 2D elastic shell model (solid thin lines) with (a) the lattice dynamics model (solid coarse lines)
in [49], (b) the continuum model (dotted lines) in [51], (c) the lattice dynamics model (dotted lines) in [54], (d) the force constant model
(dotted lines) in [50], (e) the lattice dynamics model (dotted lines) in [52], and (f) the lattice dynamics model (dotted lines) in [55] for
circumferential modes of a (10, 10) SWCNT with n = 2–5.

and Dtorsion = 0.8 eV, equation (3) can be satisfied, which
suggests that a 3D elastic thin shell model indeed serves as
an approximation for SWCNTs with the effective thickness
calculated for a (10, 10) SWCNT via equation (3) as 0.1 nm,
which satisfies the Vodenitcharova–Zhang criterion [4].

Based on the local density approximation theory [22, 58],
the nonzero off-plane torsion rigidity of SWCNTs is attributed
to their π -orbital electron resonance, especially the dihedral
angle torsion-induced change in the π -orbital electron density
on both sides of SWCNTs, but is independent of σ -bond
stretching and angle variation. Thus, the vanished off-plane
torsion rigidity Dtorsion = 0 reported in [42] is due to the
fact that the model used in [42] cannot account for the effect
of π -orbital on the deformation of SWCNTs that contributes
100% to the off-plane torsion rigidity of SWCNTs. In
addition, it is worth mentioning that for some vibration modes
of shell-like structures the influence of boundary conditions
imposed on their two ends can effectively propagate into
the central part even if their dimension in even changed to
even if here; please check. longitudinal direction is very
large. For example, the beam-like bending mode (n = 1)
is strongly dependent on the end conditions of SWCNTs
modeled as shells. As indicated before, the frequency of
such bending vibration is not controlled by the off-plane
rigidities obtained in the present curve fitting; instead, it is

completely determined by the in-plane rigidity Kextension used
in the present work whose value, 350 J m−2, has been justified
by almost all previous studies [1, 16–24, 30, 47–49]. Thus
the good agreement between the present 2D shell mode with
the existing discrete [49, 56] and continuum models [51]
for beam-like bending modes of SWCNTs and with all the
others [49–52, 54, 55] on the general vibration spectra for a
(10, 10) SWCNT implies that the equivalent end conditions
of a (10, 10) SWCNT considered in these studies are similar
and close to those used in the present work for SWCNTs,
although these end conditions were not explicitly specified
before [49–52, 54, 55]. Hence, the off-plane rigidity values
given by the present study can be considered to be independent
of the specific boundary conditions imposed on SWCNTs.

3. Conclusions

In summary, the present study found that SWCNTs can be
modeled as 2D elastic shells with their deformation governed
by four independent elastic constants, i.e., bending rigidity,
off-plane torsion rigidity, in-plane rigidity and Poisson ratio
(or in-plane shear rigidity), and that the off-plane torsion
rigidity of SWCNTs cannot be zero. Moreover, the validity
of a 3D isotropic shell model for SWCNTs with well-defined

5



Nanotechnology 19 (2008) 195704 C Y Wang and L C Zhang

effective thickness, e.g., 0.1 nm for (10, 10) SWCNTs, can be
justified by the fact that the four independent elastic constants
of SWCNTs can approximately satisfy the condition imposed
on their counterparts of 3D elastic thin shells.
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