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Abstract

This paper presents a constitutive modelling technique for the multi-phase transformations in mono-crystalline

silicon under complex loading. The development is based on the physical mechanisms observed experimentally and the

incremental theory of plasticity. The stress–strain relationship is derived using closed loading/unloading surfaces,

associated flow rule and isotropic hardening rule, to reflect the pressure-sensitive behaviour of the material with vol-

umetric plastic strains. With the aid of the finite element method, the model is successfully applied to predict the elastic–

plastic response of silicon subjected to hydrostatic pressure and nano-indentation, including the phenomena of pop-in

and pop-out.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Mono-crystalline silicon has been extensively studied in recent years and as many as 12 stable or

metastable solid structures of elemental silicon have been experimentally observed at different stress levels

or strain rates.

With increasing the hydrostatic pressure in a diamond anvil cell, silicon undergoes various phase

transformations whose stress thresholds are dependent on the loading/unloading conditions. In loading at a

pressure of 10–12 GPa (Hu et al., 1986) the original diamond structure of silicon (Si I) transforms into a

denser b-tin (metallic) phase (Si II), accompanied by a 22% volumetric reduction. A further volumetric

decrease of 0.2–0.5% associated with the Imma silicon (Si XI) occurs when the pressure reaches the range of
13–16 GPa (McMahon and Nelmes, 1993; McMahon et al., 1994). More phase changes take place upon

further increment of the pressure: the primitive hexagonal (ph, Si V) at 14–16 GPa (Hu et al., 1986), Cmca

(Si VI) at above 38 GPa (Hanfland et al., 1999) and the hexagonal close-packed structure (hcp, Si VII) at
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40–49 GPa (Hu et al., 1986). The sequence of the high-pressure phase transformations concludes with the

face centered cubic silicon (fcc, Si X) at around 79 GPa (Duclos et al., 1990) which was claimed to remain

stable up to 248 GPa.

The above thresholds during loading were determined under pure hydrostatic stress states. When de-
viatoric stresses were added, the hydrostatic thresholds were lowered (Hu et al., 1986; Wu et al., 1999). This

was also confirmed by micro/nano-indentations in which both hydrostatic and deviatoric stresses appear.

Upon hydrostatic unloading, the phase metamorphism of silicon shows a different process. First, the

hexagonal close-packed Si changes to ph Si, and then to b-tin Si. Upon further unloading, the b-tin Si can

undertake several crystalline forms, changing to a metastable rhombohedral (R8, Si XII) solid structure at

8–10 GPa (Crain et al., 1994; Pfrommer et al., 1997; Piltz et al., 1995) and to a 1–2% denser body centered

cubic silicon (bcc, Si III) at 2 GPa. Finally, at full unloading, amorphous Si appears (Tolbert et al., 1996).

The micro/nano-indentation tests have made further revelations of the complex phase changes in silicon
(Callahan and Morris, 1992; Clarke et al., 1988; Domnich et al., 2000; Galanov et al., 1998; Gogotsi et al.,

2000; Swain, 1998; Weppelmann et al., 1993; Williams et al., 1999; Zarudi and Zhang, 1999). It was found

that the load–penetration curve in a loading/unloading cycle is hysteretic. Most interestingly, while the

curve is smooth over a large interval, it suddenly jumps at some points, called pop-in/pop-out, regarded as

the finite penetrations caused by a sudden volumetric reduction/expansion of a large volume of silicon

during the transition from one phase to another. In their experiments on indentation with a spherical in-

denter, Zarudi and Zhang (1999) discovered that the denser ductile structure of the b-tin silicon in

unloading undergoes a process from b-tin to bcc, and then to amorphous.
The findings of the experiments have been supported by theoretical studies in terms of the stability of the

various silicon microstructures (Chang and Cohen, 1985; Cheong and Zhang, 2000a,Cheong and Zhang,

2000b; Duclos et al., 1990; Mizushima et al., 1994; Mylvaganam and Zhang, 2003; Piltz et al., 1995; Smith

et al., 2000; Yin and Cohen, 1982; Zhang and Tanaka, 1999). At the atomic scale, Zhang and Tanaka

(1999) did molecular dynamics (MD) simulations and found that the volume reduction at pop-in is about

20%. Cheong and Zhang (2000a) pointed out that the formation of the b-tin phase in loading is critical to

the appearance of amorphous silicon after unloading.

The existing experimental and theoretical work has greatly contributed to the understanding of the
microstructural changes, and consequently, the mechanical behaviour that silicon exhibits under external

loads. However, a mechanical constitutive model capable of predicting the phase transitions of silicon does

not exist. The formulations available, such as the von Mises and Drucker-Prager models, cannot produce

consistent results with the experimental findings. In their finite element analysis of micro-indentation by a

spherical indenter, Zhang and Mahdi (1996) have shown that the von Mises material formulation does not

closely match the experimental load–penetration curve, and does not predict the observed pop-out.

This paper aims to develop a new constitutive model to accommodate the microstructural effect of phase

transformations in silicon when subjected to complex loading conditions. Similar to the classical theory of
plasticity, the model will introduce a series of threshold surfaces to mark the onset of plasticity and the

subsequent phase transformations. After that, the plastic gradients are calculated from the plastic potential

function, plastic flow and hardening rule.
2. Yield criterion

The constitutive laws used so far in predicting the behaviour of silicon through numerical simulations

have been the conventional von Mises model and the Drucker-Prager model, Fig. 1; the former resting on

the assumption that the yield surface is a right cylinder and that yielding does not depend on the hydrostatic

stress. A model for pressure-sensitive materials is the Drucker-Prager model (Desai and Siriwardane, 1984)
which recognizes the role of hydrostatic compression on yielding, but assumes that the conical yield surface



Fig. 1. Yield functions in principal stress space.

T. Vodenitcharova, L.C. Zhang / International Journal of Solids and Structures 41 (2004) 5411–5424 5413
is open in the negative principal stress space. This is clearly not suitable for describing the mechanical
behaviour of silicon, because, as discussed above, silicon has a series of definite phase transformation events

in the negative principal stress space along its isocline. Hence, a more reliable prediction may be achieved if

the yield surface for silicon is closed on both sides of the principal stress space.

Based on these considerations, five fixed (limiting) quadratic surfaces of closed ellipsoids are introduced,

as shown in Fig. 2. The first surface is for the onset of plasticity, and the remaining ones are for the four

subsequent phase transformation events in loading, from the initial diamond structure of silicon to its b-tin,
ph, hcp, and fcc structures. When the stress level is low, the material is elastic and the stress point r is inside

the first limiting surface. The material becomes elastic–plastic when r reaches the first yield surface. The
deformation then develops according to a hardening law with the further increase of r. When r reaches the

first phase transformation surface, the material undergoes a sudden volumetric change and after that it

hardens and moves further towards the following phase transformation surfaces. In unloading, phase

changes have also been experimentally observed but at different hydrostatic thresholds. Therefore, another
Fig. 2. Yield surface and phase transformation surfaces in loading, in principal stress space.



5414 T. Vodenitcharova, L.C. Zhang / International Journal of Solids and Structures 41 (2004) 5411–5424
set of closed fixed phase transformation surfaces is defined, which pass through the experimental hydro-

static thresholds in unloading and are parallel to those in loading.

Let the second deviatoric stress invariant at time t þ Dt be tþDtJ2, the effective stress be tþDtr2 ¼ 3tþDtJ2,
and the hydrostatic pressure be tþDtrm. The coordinates of a stress point in the three-dimensional principal
stress space, along its isocline and in the perpendicular direction, are

ffiffiffi
3

p
tþDtrm and

ffiffiffi
2

p
tþDtJ2, respectively.

The yield surfaces are assumed to be continuous and ellipsoidal, centered at
ffiffiffi
3

p tþDtptþtþDtpc
2

along the isocline

of the space, thus
ffiffiffi
3

p
tþDtrm � tþDtD

� �2
ffiffiffi
3

p
tþDtpt �

ffiffiffi
3

p
tþDtpc

� �
=2

� �2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2tþDtJ2

p� �2
tþDtR2

¼ 1; ð1Þ
where tþDtpt, tþDtpc and tþDtR are material constants (Fig. 2), and tþDtD is the distance between the center of

the ellipsoid and the origin of the coordinate system, i.e.,
tþDtD ¼ �
ffiffiffi
3

p
ðtþDtpt þ tþDtpcÞ

2
: ð2Þ
Hence, the fixed and moving yield/phase transformation surface is defined in terms of the mean stress
and the effective stress. If Eq. (1) is multiplied by 1:5tþDtR2, it gives rise to
tþDtf ðtþDtrm;
tþDtr2; tþDtepij;

tþDtpt; tþDtpc; tþDtRÞ ¼ 3

2

tþDtR2½tþDtrm�ðtþDtpt þ tþDtpcÞ=2�2

½ðtþDtpt � tþDtpcÞ=2�2
þ tþDtr2 � 3

2
tþDtR2 � 0;

ð3Þ

or simply,
tþDtf � 0; ð4Þ

which holds for all limiting and moving surfaces. In the case of a moving phase transformation surface, the

state parameters vary with the external load and depend on the material properties and the hardening
parameters.
3. Flow rule

The flow rule relates the plastic strain increments to the current stresses and stress increments. It is

assumed that the normality rule and the associated flow law hold, i.e., the strain increments, Depij, are
normal to the plastic potential function and the plastic potential function is associated with the yield
function. Thus, the plastic strain increments take the form
Depij ¼ k
otþDtf ðtþDtrm;

tþDtJ2Þ
otþDtrij

¼ k
otþDtf
otþDtrm

otþDtrm

otþDtrij
þ k

otþDtf
otþDtJ2

otþDtJ2
otþDtrij

; ð5Þ
where k is the plastic multiplier, dependent on the hardening rule and the state variables at time t. Since
otþDtrm

otþDtrij
¼ 1

3
dij;

otþDtJ2
otþDtrij

¼ tþDtSij; ð6Þ
Eq. (5) reads
Depij ¼ k
tþDtR2½tþDtrm � ðtþDtpt þ tþDtpcÞ=2�

3½ðtþDtpt � tþDtpcÞ=2�2
dij þ ktþDtSij: ð7Þ
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In Eq. (7), the first term relates to the volumetric plastic strain increment,
Depv ¼ k
tþDtR2½tþDtrm � ðtþDtpt þ tþDtpcÞ=2�

½ðtþDtpt � tþDtpcÞ=2�2
; ð8Þ
and the second term gives the plastic strain increments due to the deviatoric stresses. Eq. (7) shows that the

vector of the inelastic strain increment is not in the direction of the deviatoric stress vector.

In loading, the plastic multiplier k is positive. Eq. (8) indicates that the volumetric plastic strain Depv > 0,

if
rm � ðpt þ pcÞ=2 > 0: ð9Þ
Therefore, the volume of the material increases for mean stresses higher than the mean stress at the
ellipsoid’s center, and decreases when they are lower.

The plastic multiplier k can be evaluated by taking a dot product of the increment of the plastic strain

tensor in Eq. (7), which gives rise to
k2 ¼ 1

3

DepijDe
p
ij

2tþDtr2 þ tþDtR4½tþDtrm�ðtþDtptþtþDtpcÞ=2�2

½ðtþDtpt�tþDtpcÞ=2�4

: ð10Þ
4. Post-yielding behaviour

The post-yielding behaviour is captured by the hardening law, which governs the modification of a yield

surface during plastic flow. The rate of expansion/shrinkage of the surface is experimentally determined for

simple stress states, and conclusions are then drawn for complex stress states. In this work, a pure
hydrostatic pressure test is taken to define the hardening of silicon as the expansion of the yield surface

perpendicular to the space diagonal is assumed to be given by DR ¼ jDpcj ¼ Dpt. Furthermore, it is assumed

that the hardening is isotropic, i.e., the center of the yield surface does not move. It is worth emphasizing

that although the moving surfaces should remain smooth and not intersect each other, their rate of

expansion in the presence of deviatoric stresses may not be isotropic as assumed above. Nevertheless, this

hypothesis can suffice as a first approximation and a refinement can be easily conducted when future

experimental evidence becomes available.
5. Stress–strain relationship

The above yield function, flow rule, and hardening rule result in a relationship between the stress vector

and strain vector. The stresses for a particular load depend not only on the material constants and total

strains, but also on the plastic strains accumulated along the loading path. In the numerical procedure it is

assumed that the stress/strain state is completely known at time t, and the total strains are assigned for time
t þ Dt. The current stresses at t þ Dt can be calculated as for an ‘imaginary’ elastic state obtained by

unloading the material from the current stress state (Bathe, 1996). This is illustrated in Fig. 3, where r and e

refer to the stress and strain states in general. The elastic strain components at t þ Dt are evaluated as the

difference between the total strain components, tþDteT, and the plastic strains, tþDtep,
tþDtr ¼ CetþDtee ¼ CeðtþDteT � tþDtepÞ; ð11Þ
where Ce is the elastic constitutive tensor. Furthermore, the plastic strains at t þ Dt are the sum of the

plastic strains at t and the plastic strain increment from time t to t þ Dt,



Fig. 3. Elastic–plastic material behaviour with a pop-in.
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tþDtep ¼ tep þ Dep: ð12Þ

After expanding the right-hand side of Eq. (11), the formula for tþDtr can be interpreted as the sum of an

elastic predictor tþDtre for the response between t and t þ Dt (Dep is zero), and a stress correction that takes

the stress vector back to its current state,
tþDtrcor ¼ �CeDep: ð13Þ
Eqs. (13) and (7) show that the correction stress vector of the present model is not in the direction of the

deviatoric stress vector, because it is altered by the mean stress.

By substituting Eq. (7) into Eq. (12), and then into Eq. (11), the general stress–strain relationship at

t þ Dt can be written as a sum of the mean and the deviatoric stress components,
tþDtrij ¼ tþDtrmdij þ tþDtSij; ð14Þ
where
tþDtSij ¼
tþDte00ij

1þl
E þ k

; ð15Þ

tþDte00ij ¼ tþDte0ij � tepij; ð16Þ

tþDte0ij ¼ tþDteTij � tþDteTmdij: ð17Þ
Clearly, Eq. (15) represents the first constitutive law (Bathe, 1996) and Eq. (17) gives the components of

the deviatoric strain tensor.

The mean stress in Eq. (14) is
tþDtrm ¼ 3KðtþDte00m � DepmÞ; ð18Þ
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tþDte00m ¼ tþDteTm � tepm; ð19Þ

tepm ¼
tep11 þ tep22 þ tep33

3
¼

tepv
3
; ð20Þ
which show the second constitutive law. In the above formulae tþDteTm is the total mean strain at t þ Dt and
tepm is the plastic mean strain at t.

In view of Eq. (8), for a complex stress state, Eq. (18) reads
tþDtrm ¼
3KtþDte00m

ðtþDtpt�tþDtpcÞ2
4

þ KktþDtR2 tþDtPtþtþDtPc
2

ðtþDtpt�tþDtpcÞ2
4

þ KktþDtR2
: ð21Þ
By taking the dot product of the tensors in Eq. (15), the effective stress at t þ Dt becomes
tþDtr2 ¼
tþDtd2

1þl
E þ k

� �2 ; ð22Þ
where
tþDtd2 ¼ 3

2
tþDte00T � tþDte00: ð23Þ
The formulae for the stress components at t þ Dt are therefore defined in terms of the assigned total

strains, where the plastic multiplier k is determined by the accumulated plastic strains along the loading

path.
6. Tangent stress–strain matrix

Eq. (11) represents the integrated form of the incremental stress–strain relationship. In order to apply the

finite element method for the stress integration, a tangent stress–strain matrix at t þ Dt, which must be

consistent with the numerical stress integration scheme, is required. To this end, let the stress and total

strain states be defined in a vector form as
tþDtr ¼ tþDtr1
tþDtr2

tþDtr3
tþDtr4

tþDtr5
tþDtr6

� �
; ð24Þ

tþDteT ¼ tþDteT1
tþDteT2

tþDteT3
tþDteT4

tþDteT5
tþDteT6

� �
; ð25Þ

tþDteT4 ¼ tþDtc12;
tþDteT5 ¼ tþDtc23;

tþDteT6 ¼ tþDtc31;
tþDtcij ¼ tþDteTij þ tþDteTji: ð26Þ
Then, the terms of the tangent elastic–plastic constitutive tensor can be calculated as the derivatives of

the stress vector with respect to the total strain vector, i.e.,
Cep ¼ otþDtr

otþDteT
: ð27Þ
For a general loading, the derivatives of the normal stresses, tþDtri ði ¼ 1; 2; 3Þ, with respect to the

corresponding total normal strains, tþDteTi ði ¼ 1; 2; 3Þ, become
Cep
ii ¼ otþDtrm

otþDteTi
þ 2

3 1þl
E þ k

� �� tþDte00i
1þl
E þ k

� �2 ok
otþDteTi

; i ¼ 1; 2; 3: ð28Þ
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This matrix is symmetric with non-diagonal terms in the first three rows, i.e.,
Cep
ij ¼ otþDtrm

otþDteTj
� 1

3ð1þl
E þ kÞ

�
tþDte00i

1þl
E þ k

� �2 ok
otþDteTj

; i ¼ 1; 2; 3; j ¼ 1; 2; 3; i 6¼ j: ð29Þ
The derivatives of the normal stresses with respect to the shear strains can be calculated as
Cep
ij ¼ 1

2

otþDtrm

otþDteTkl
� 1

2

tþDte00i
1þl
E þ k

� �2 ok
otþDteTkl

for i ¼ 1; 2; 3; j ¼ 4; 5; 6; k ¼ j� 3; l ¼ j� 2 or

l ¼ j� 5 if l > 3: ð30Þ
The derivatives of the shear stresses with respect to the corresponding shear strains are given by
Cep
ii ¼ 1

2ð1þl
E þ kÞ

�
tþDte00i

2 1þl
E þ k

� �2 ok
otþDteTi

for i ¼ 4; 5; 6; ð31Þ

Cep
ij ¼ �

tþDte00j

2 1þl
E þ k

� �2 ok
otþDteTj

for i ¼ 4; 5; 6; j ¼ 1; 2; 3: ð32Þ
In taking the derivatives of the mean stress in Eq. (21), one needs to note that the plastic multiplier and

the state parameters are variable. Thus, Eq. (10), in combination with the experimental material curve r–e,
and the yield condition, Eq. (4), should also be differentiated.
7. Multi-linear material model

A complete definition of the material model requires quantitative evaluations of its material parameters,

i.e. the elastic modulus E, Poisson’s ratio l, the dimensions of the fixed yield/phase transformation surfaces,

the rate at which they move (hardening parameters), and a possible tensile cut-off. Traditionally, these

material constants are provided by simple experiments, which induce uniform stress/strain conditions in the
tested samples. Silicon, however, is a very different material whose phase changes are sensitive to the

combination of hydrostatic and deviatoric stresses. Thus, the hydrostatic pressure test and indentation are

suitable for the constitutive modelling of silicon.

For mono-crystalline silicon, MD simulations conducted by Mylvaganam and Zhang (2003) have

suggested that a multi-linear approximation, as shown in Fig. 4, is reasonable. Thus, the formulae for the

stress components and tangent stress–strain components derived above can be much simplified as follows.

The plastic multiplier in Eq. (10) in pure hydrostatic compression depends only on the mean stress at

t þ Dt. However, the mean stress also satisfies the yield criterion and it is the state variable tþDtpc as well.
Thus, the plastic volumetric strain increment in Eq. (8) can be written as
Depv ¼
tþDtpc � tpc Y

Kp

; ð33Þ
where tpc Y is a state variable at time t and Kp ¼ KKT

K�KT is the plastic bulk modulus. Now, the plastic multiplier

in Eq. (10) takes a simpler form of
k ¼ �
tþDtpc � tpc Y

Kp

tþDtpt�tþDtpc
2

tþDtR2
: ð34Þ
The negative sign above leads to a positive plastic multiplier in loading and a negative one in un-

loading.



Fig. 4. Experimental working diagram of hydrostatic stress vs. volumetric total strain in pure hydrostatic compression.
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Further, for a multi-linear hardening, Eq. (11) reduces to
tþDtrm ¼
3KKp

tþDte00m
ðtþDtpt�tþDtpcÞ

2
� K

tþDtPtþtþDtPc
2

ðtþDtpc � tpc Y Þ
Kp

ðtþDtpt�tþDtpcÞ
2

� KðtþDtpc � tpc Y Þ
: ð35Þ
In taking the derivatives of the mean stress and the plastic multiplier, the yield criterion, flow rule and

hardening rule need to be used. Letting DR ¼ jDpcj ¼ Dpt Eqs. (34) and (35) become
ok
otþDteTj

¼ otþDtR
otþDteTj

tþDtpt�tþDtpc
2

� ðtþDtpc � tpc Y Þ � 2Kp
tþDtRk

Kp
tþDtR2

; ð36Þ

otþDtrm

otþDteTj
¼

tþDtNj

KðtþDtpc � tpc Y Þ � Kp

tþDtpt�tþDtpc
2

; ð37Þ
where the numerator tþDtNj is calculated by
tþDtNj ¼ �3KKp

tþDtpt � tþDtpc
2

1

3
þ oDR
otþDteTj

�
� 3KKp

tþDte00m þ K tþDtrm

	
�

tþDtpt þ tþDtpc
2

þ Kp
tþDtrm


�

for j ¼ 1; 2; 3; ð38Þ

tþDtNj ¼
oDR
otþDteTj

�
� 3KKp

tþDte00m þ K tþDtrm

	
�

tþDtpt þ tþDtpc
2

þ Kp
tþDtrm


�
for j ¼ 4; 5; 6: ð39Þ
For the derivatives of R above, the yield criterion gives rise to
oDR
otþDteTj

¼
� 4

3
tþDtr 1

1þl
E þk

od
otþDtej

� 2KKp
tþDtR2 sn

s2d

P
for j ¼ 1; 2; 3; ð40Þ

oDR
otþDteTj

¼
� 4

3
tþDtr 1

1þl
E þk

od
otþDtej

P
for j ¼ 4; 5; 6; ð41Þ
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where
sn ¼ 3KKp
tþDte00m � Kp

tþDtpc þ tþDtpt
2

; ð42Þ
sd ¼ Kp

tþDtpc � tþDtpt
2

� KðtþDtpc � tpc Y Þ; ð43Þ
P ¼ � 4

3
tþDtr2

tþDtpt�tþDtpc
2

� ðtþDtpc � tpc Y Þ � 2Kp
tþDtRk

1þl
E þ k

� �
Kp

tþDtR2
þ 2tþDtR

s2n
s3d

	
� 1



þ 2tþDtR2ðK þ KpÞ

s2n
s3d

ð44Þ
8. Numerical applications

The constitutive model developed above can be applied to any type of loading. The integration of the

stress–strain relationship can be implemented numerically. With the aid of ADINA, a commercially
available FEA code, the formulae given in the previous sections are programmed in FORTRAN77 and

supplied to the code as user-defined functions. The software assigns the total strains for each load incre-

ment, based on the provided elastic modulus. Then, it calls the user-supplied routines at each integration

point for the calculation of the stresses, plastic strains and tangent stress–strain matrix. Some further details

related to the implementation are listed in the Appendix A.

In order to validate the model two loading conditions are considered, a pure hydrostatic compression

deducted from a MD simulation (Mylvaganam and Zhang, 2003) and an indentation carried out experi-

mentally (Zarudi and Zhang, 1999).
8.1. Cubic silicon under hydrostatic compression

Under pure hydrostatic compression, Mylvaganam and Zhang (2003) revealed using MD simulations
(Fig. 5) that the diagram of the mean stress vs. the total volumetric strain is almost linear initially until

reaching a threshold of around 21 GPa, with a bulk modulus of 121.7 GPa. Then, within the zone

rm 2 ð21; 29ÞGPa, metallic silicon appears with an elastic–plastic behaviour, giving a tangent bulk modulus

of 90.5 GPa. A second phase transformation, b-tin to hexagonal prism, is found in the range rm 2 ð29; 33:5Þ
GPa with a tangent bulk modulus of 54.1 GPa. To examine if the new constitutive model can predict the

same results as MD, these material constants were applied to our FEA simulations as the hydrostatic

pressure varied from zero to 33.5 GPa, Fig. 5. The sample was unloaded from 29 and 33.5 GPa, respec-

tively. As unloading is linear elastic and the stress state is uniform, the unloading curve is a straight line. It
is clear, as shown in Fig. 5, that the new model does reproduce the MD predictions. Fig. 5 also shows that

the von Mises model can predict neither the plastic behaviour of silicon nor its phase transformation.

To demonstrate that the present model can accommodate sudden volumetric strains, causing the pop-

ins/pop-outs phenomena, another FEA simulation is performed, Fig. 6. The pop-in is of 22% of the total

volumetric strain, and it is assigned at the same threshold of 21 GPa as in Fig. 5. In unloading, to reflect the

observation from MD simulations, it is assumed that the phase change happens in bulk silicon at a

hydrostatic threshold of 16.2 GPa, with a volumetric expansion of 8% (Piltz et al., 1995).

If the von Mises material model is used in the FEA simulations, the stress–strain curve is a straight line
in loading and unloading, as shown in Figs. 5 and 6. It is clear that the new material model is capable of

characterising the plastic behaviour of pressure sensitive materials while the von Mises model is not.



Fig. 5. Mean stress vs. total volumetric strain for elastic–plastic mono-crystalline silicon in hydrostatic stress state.

Fig. 6. Mean stress vs. total volumetric strain for elastic–plastic mono-crystalline silicon in hydrostatic stress state with a pop-in and a

pop-out.

T. Vodenitcharova, L.C. Zhang / International Journal of Solids and Structures 41 (2004) 5411–5424 5421
8.2. Nano-indentation

The present model was also applied to the indentation of silicon with a spherical indenter of 5 lm in

radius and a maximum penetration of 320 nm (Vodenitcharova and Zhang, 2003). The relevant experiment
was conducted by Zarudi and Zhang (1999). It is shown (Fig. 7) that the model predicts very well the

experimental load–penetration curve. The material constants in the FEA simulations were derived by

comparing the FEA results with the experimental data, and were found to be E ¼ 80 GPa, l ¼ 0:17; the
hydrostatic thresholds in ascending order being 8.5, 10, 16, 40 and 79 GPa; the tangent bulk modulus being



Fig. 7. Load–penetration curve of nano-indentation.

5422 T. Vodenitcharova, L.C. Zhang / International Journal of Solids and Structures 41 (2004) 5411–5424
30 GPa for the diamond silicon, and 1 GPa for all subsequent solid phases. A volumetric reduction of 22%

was assigned in loading at 10 GPa, which produced the observed pop-in in Fig. 7 at a penetration of around
210 nm. Upon unloading, at a penetration of around 200 nm, a well-defined finite displacement (pop-out)

was recorded in the experiment. Applying the new constitutive model, the authors found that this sudden

expansion could have been caused by a volumetric change in all the transformed material points of 80% of

the total volumetric strain. More details on the FEA procedure and the variation of both the hydrostatic

stress and the effective stress with the load and spatial coordinates can be found in another paper already

published by the authors (Vodenitcharova and Zhang, 2003).

The values of E and l are consistent with the literature reports, e.g. (Bever and Wert, 1990;

www.design.caltech.edu/Research/MEMS/siliconprop.html; www.webelements.com/webelements/elements/
text/Si/phys.html); the values of all other material parameters are consistent with the references mentioned

in Section 1.
9. Conclusions

A new mechanical constitutive model has been developed for the multi-phase transformations of mono-

crystal silicon, adopting the fundamental principles of the incremental theory of plasticity. The yield

transformation surfaces used are closed and ellipsoidal. The model is capable of simulating complex

behaviour of silicon such as pop-in and pop-out, which cannot be studied by any other existing continuum

theories.

The current model can be extended to study other similar pressure-sensitive materials that have com-
plicated solid phase transformations under mechanical loading.
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Appendix A

The steps of solution are similar to those given in the user-supplied options manual of ADINA, and
outlined by Bathe (1996) for the von Mises model.
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However, it needs to be noted that in contrast to the von Mises material, an exact solution for the

stresses in the elastic–plastic zone at t þ Ddt cannot be found from Eqs. (22) and (35) since the state

variables are stress-dependent. A bisection scheme is therefore employed to solve Eq. (4) for DR, the dis-

tance between the current yield surface and the previous one. Then the state variables are updated,
tþDtR ¼ tRY þ DR; tþDtpc ¼ tpc Y � DR; tþDtpt ¼ tpt Y � DR: ðA:1Þ
The present model accounts for pops-in and pops-out. According to the experiments, the pops-in are

sudden volumetric reductions at the point of phase transformation. In the present study, a finite inelastic

strain, proportional to the total mean strain and the experimentally observed volumetric reduction, is added

to the accumulated direct inelastic strains stored at time t:
tepi ¼
Z t

0

Depi þ p
teTv
3
; i ¼ 1; 2; 3: ðA:2Þ
In the case of the phase change from diamond Si to b-tin, the pop-in, p, is taken as 22%. If the

hydrostatic stress is compressive, the expression in Eq. (A.2) gives a volumetric reduction, and vice versa.

It is experimentally observed that the hydrostatic compressive thresholds in unloading are also

accompanied by sudden volumetric changes. To account for this, a new set of limiting surfaces needs to be

introduced, as mentioned in Section 2 of this paper. These surfaces are also ellipsoidal but are parallel to the

corresponding loading surfaces at time t, and moving at a pace DR ¼ jDpcj ¼ Dpt. Again a bisection scheme
is employed to update the state variables corresponding to the stress state at t þ Dt.

If, however, the current ‘phase transformation’ surface in unloading is inside the elastic zone in loading,

in further unloading it might fall entirely in the negative principal stress space. To avoid such unrealistic

case, the state variables in the elastic zone in unloading are calculated proportional to the radius of the last

yield surface, e.g. for the ith limiting surface,
tþDtRi ¼ pc i

tRY

tpc Y
; ðA:3Þ
tþDtpc=t ¼ tþDtR
tpc Y =t Y

tRY
: ðA:4Þ
The pop-out in unloading is subtracted from the accumulated inelastic direct strains.
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