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Abstract. This paper discusses the phase transformation of diamond cubic silicon under
nano-indentation with the aid of molecular dynamics analysis using the Tersoff potential. By
monitoring the positions of atoms within the model, the microstructural changes as silicon
transforms from its diamond cubic structure to other phases were identified. The simulation
showed that diamond cubic silicon transforms into a body-centred tetragonal form (β-silicon)
upon loading of the indentor. The change of structure is accomplished by the flattening of the
tetrahedron structure in diamond cubic silicon. Upon unloading, the body-centred tetragonal
form transforms into an amorphous phase accompanied by the loss of long-range order of the
silicon atoms. By performing a second indentation on the amorphous zone, it was found that
the body-centred-tetragonal-to-amorphous phase transformation could be a reversible process.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

The phase transformation of diamond cubic silicon
due to indentation has been the subject of much
literature. According to these studies, the initial
plastic deformation during indentation is accompanied
by a densifying semiconductor-to-ductile-metal phase
transformation. Upon unloading, a tetragonal-body-
centred-to-amorphous-semiconductor phase transformation
is observed [1]. The conclusions are supported by several
studies carried out using electrical resistance [2–7], x-ray
diffraction [8–12] and optical properties [13–15]. These
experimental studies revealed that silicon transformed from
its diamond cubic structure to a metallic body-centred
tetragonal structure, known also as β-silicon. In the
experiments, the metallic nature of the β-silicon phase
is inferred by the fall in the resistivity of silicon by a
few orders of magnitude during indentation. Diffraction
patterns obtained during indentation also lend credence
to the transformation of silicon from its diamond cubic
to the body-centred tetragonal phase. Although these
experiments have furnished us with a wealth of information,
combining the information into a convincing picture of the
microscopic mechanisms of the phase transition is impeded
by possible ambiguities in interpreting these experimental
findings. Ideally one would want to directly observe the
atomic-scale processes involved in the phase transformation.

† Author for correspondence.

Such an experiment can be more easily carried out with
computer simulations, in particular using the molecular
dynamics method. In this present study, molecular dynamics
is used to simulate the effects of nano-indentation on a silicon
monocrystal. This method allows for the simulation of the
phase transition without any assumption on the nature of
the phases. The atoms are placed on perfect positions at
the beginning, and the resulting structures only depend on
the thermo-mechanical conditions and the interaction forces
between atoms, as defined by the potential function. The
simulation reveals that silicon transforms from its diamond
cubic structure into a body-centred tetragonal form in the
region directly beneath the indentor during indentation and
transforms into an amorphous phase upon unloading of the
indentor. The structure of the tetragonal form obtained
is similar to that of β-silicon. Hence, though molecular
dynamics does not reproduce the real experiments due to
differences in time and size scale, the simulation provides
possible theoretical evidence of the phase transformation
observed in the experiments quoted above and enables us
to better understand the mechanisms involved in such a
transformation. As a first step in this direction, it is necessary
to establish the validity of the interatomic potential to be
used in the atomistic simulations. The primary concern was
to validate the ability of the chosen interatomic potentials
to predict the stability of the various crystal structures
involved. The potential functions used in the simulation
and the molecular dynamics model will be discussed in the
following section.
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Figure 1. Molecular dynamics simulation model of silicon
monocrystal and diamond indentor. The size of the control volume
is LX × LY × LZ . In all the calculations, the velocity of the
indentor v = 40 m s−1.

2. Computation and modelling

2.1. Initial model

Figure 1 shows the model of a specimen of silicon
monocrystal and diamond indentor used in the simulation.
The hemispherical diamond indentor has a radius of 2.14 nm.
The dimension of the control volume of the silicon specimen
has to be made sufficiently large to eliminate boundary
effects. Taking this into consideration, an optimum control
volume is chosen based on an iterative process of increasing
the control volume size until further increases do not affect
the displacement and velocities of the atoms due to the
indentation process. An optimum size of 6.5 × 10.3 ×
10.3 nm3 is obtained for this simulation. Figure 2 shows the
displacement field of the atoms at the maximum indentation
for the optimum control volume size, where the direction of
an arrow indicates the direction of an atom displacement and
the length of the arrow is the magnitude of displacement.
It can be seen that the atoms affected by the indentor are
primarily those near the indentor. Atoms away from that
region do not displace from their equilibrium positions. To
restrict the rigid-body motion of the specimen, layers of
boundary atoms that are fixed in space are used to contain
the Newtonian atoms with the exception of the top (100)
surface, that is exposed to the indentor. Thermostat atoms
are also used to ensure a reasonable outward heat conduction
away from the control volume. The workpiece is made up of
36 341 atoms and the tool is made up of 1818 atoms.

2.2. Interatomic potentials

Before carrying out the molecular dynamics simulation on
the indentation of silicon, it is important to ensure that the
chosen potential function used gives a reliable result for
the simulation. For covalent systems such as silicon, the
directionality of bonding is important. Tersoff [16] proposed
a simple pair-like potential where the bond order of the
atoms is affected by its local environment. This replaces the
two- and three-body potential conventionally employed when
directionality of bonding is a concern. Based on empirical
data, Tersoff [17] also verified that the Tersoff potential is
capable of predicting stable phases of diamond cubic silicon

Figure 2. Displacement field of the atoms at the maximum
indentation. The arrows represent the displacement of the atoms
from their initial position before indentation to their new positions
at the maximum indentation. The filled circles represent the
equilibrium positions of the atoms while the smaller hollow circles
represent the displaced positions of the atoms at maximum
indentation.

Figure 3. A comparison of the theoretical calculation of atomic
heat with experimental measurement.

and body-centred tetragonal β-silicon. Hence the Tersoff
potential is used in the present simulation to dictate the
interaction between the silicon atoms. When assuming j

and k are the neighbouring atoms of atom i, the atomic bond
lengths of atoms i–j and i–k are rij and rik and the angle
between bonds i–j and i–k is θijk , then the total Tersoff
energy E can be expressed as

E =
∑
i

Ei = 1
2

∑
i �=j

Wij , (1)

where Wij is the bond energy, so the summation in the
equation is over all the atomic bonds in the control volume.
Wij is a function of the repulsive pair potential fR and the
attractive pair potential fA, and has the form

Wij = fC(rij )[fR(rij ) + bijfA(rij )] (2)

where

fR(rij ) = Aij exp(−λij rij ),

fA(rij ) = −Bij exp(−µij rij );

fC(rij ) =




1 rij � Rij

1
2 + 1

2

× cos

[
π(rij − Rij )

(Sij − Rij )

]
, Rij � rij � Sij ;

0 rij � Rij
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(a) (b)

(c) (d)

(e)

Figure 4. Positions of atoms in the silicon specimen at different stages of the indentation process. The smaller dots are diamond atoms.
(a) Crystalline structure of diamond cubic silicon prior to indentation; (b) atoms beneath the indentor displaced from their original structure
during indentation; (c) at maximum indentation, atoms beneath the indentor (circled by the dotted line) have a crystalline order different
from that of the original diamond cubic structure; (d) long-range order of crystals is lost, leading to formation of amorphous phase during
unloading; (e) residual amorphous phase silicon after indentation.
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Figure 5. Graph of number of atoms with specified nearest
number of neighbours against time. There is a significant increase
in the number of atoms having six nearest neighbours during
indentation.

Table 1. Parameters in Tersoff potential for carbon and silicon.

Parameter Carbon Silicon

A (eV) 1.3936 × 103 1.8308 × 103

B (eV) 3.4670 × 102 4.7118 × 102

λµ 34.879 24.799
µ 22.119 17.322
β 1.5724 × 10−7 1.1000 × 10−6

n 7.2751 × 10−1 7.8734 × 10−1

c 3.8049 × 104 1.0039 × 105

d 4.384 × 100 1.6217 × 101

h −5.7058 × 10−1 −5.9825 × 10−1

R (nm) 0.18 0.27
S (nm) 0.21 0.30

χc−c = 1.0 χSi–Si = 1.0 χC–Si = 0.9776

bij = χij (1 + β
ni
i ζ

ni
ij )

−1/2ni ,

ζij =
∑
k �=i,j

fC(rik)g(θijk),

g(θijk) = 1 + c2
i /d

2
i − c2

i /[d2
i + (hi − cos θijk)

2];
λij = (λi + λj )/2, µij = (µi + µj)/2,

Aij = (AiAj )
1/2, Bij = (BiBj )

1/2,

Rij = (RiRj )
1/2, Sij = (SiSj )

1/2.

Other parameters such as A, B, R, S, λ, χ and µ, as
listed in table 1, are Tersoff potential parameters, depending
on individual materials. With equations (1) and (2), the
interaction forces between silicon atoms can be obtained by
calculating the gradient of E.

The interaction between the silicon atoms and the
diamond indentor atoms is modelled by the Morse
potential [18, 19] given by

φ(rij ) = λ1D[exp{−2λ2α(rij − r0)}
−2 exp{λ2α(rij − r0)}].

The parameters such asD, α and r0 are shown in table 2. The
interaction force is calculated by the gradient of φ.

The choice of these potentials is supported by previous
simulations and tests, which showed good agreement
between simulation results and experimental data [20–22].

Table 2. Parameters in the standard Morse potential.

Parameter C–Si

D (eV) 0.435
α (nm−1) 46.487
r0 (nm) 0.194 75
λ1 1
λ2 1

2.3. Temperature conversion and time step for
integration

The three models [23] available for conversion between
the kinetic energy and temperature of an atom are
the Dulong–Petit model, which takes into account the
independent lattice vibration, the Einstein model, which
is based on the consideration of the single characteristic
frequency, and the Debye model, which involves a range
of frequencies. A comparison with the experimental
measurement given by Sinnott [24], see figure 3, shows
that, in the temperature regime encountered in the
present simulation, the Debye model is the best for
silicon while the Einstein model is the most suitable
for diamond. Thus these models will be used
correspondingly in the atomic heat conversion in the present
study.

To simulate the machining process under room-
temperature conditions, the silicon atoms were arranged in a
perfect diamond cubic structure with the lattice parameters
equal to their equilibrium values at an ambient temperature
of 23 ◦C. The ambient temperature is maintained by
the use of the thermostat atoms that surround the control
volume. During the simulation process, the temperature
of the thermostat atoms is kept at 23 ◦C by scaling their
velocities at every time step.

Another critical issue in molecular dynamics analysis is
the appropriate selection of the time step for the numerical
integration of the equations of motion of individual atoms.
Too small a time step requires a huge computational cost
but too large a time step brings about unreliable results. A
suitable time step should be less than 10% of the vibration
period of an atom. Hence the optimum time step is dependent
on both the specific material and the potential function used.

With the Tersoff potential, an individual atom of silicon
or diamond can be forced to move in a direction to show
the corresponding stiffness k, so that the period of vibration
of the atom in the direction T can be determined by T =
2π(m/k)1/2, wherem is the mass of the atom. A comparison
between the molecular dynamics simulation using the Tersoff
potential with experimental measurements [24] shows that a
time step of 1.0 fs for diamond and 2.5 fs for silicon will
provide sufficiently accurate integration.

3. Results and discussion

Snapshots of the location of the atoms of a silicon specimen at
different stages during the indentation are shown in figure 4.
The size of the spheres that depict silicon atoms has been
deliberately reduced so that we can clearly see any changes to
the crystalline order of diamond cubic silicon. At maximum
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(a) (b)

(c) (d)

Figure 6. Number of nearest neighbours of silicon atoms at different stages of indentation: (a) atoms having four nearest neighbours in
diamond cubic structure at the start of indentation; (b) atoms having six nearest neighbours predominant in the region beneath the indentor at
maximum indentation; (c) atoms having four nearest neighbours in the amorphous state, mixed with atoms having six nearest neighbours
after indentation; (d) atoms again predominantly having six nearest neighbours at maximum indentation during the second loading.

(a)

(b)

Figure 7. Length of bond at (a) start of indentation and
(b) maximum indentation.

indentation (figure 4(c)), it is observed that the order of atoms
beneath the indentor differs considerably from its original

Figure 8. Flattening of the tetrahedron in the diamond cubic
structure. The atoms with a lighter colour form the tetrahedron in
the diamond cubic structure. The top diagram shows the change of
shape of this tetrahedron during the indentation process.
(a) Tetrahedron before indentation, (b) during indentation and
(c) at maximum indentation.

pattern. However, these transformed atoms still maintain a
long-range crystalline order. This suggests that a displacive
phase transformation of one crystalline form of silicon to
another has occurred.
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Figure 9. An atom of β-silicon with its six nearest neighbours.
Four atoms are at a distance of 2.43 Å and another two at a slightly
further distance of 2.585 Å.

Figure 10. Crystal structure of β-silicon phase during maximum
indentation.

Figure 11. An atom of the distorted β-silicon obtained during the
second indentation, with its six nearest neighbours.

An investigation into the coordination number of the
atoms reveals that, accompanying such a transformation,
there is a significant increase in the number of atoms
that are six coordinated. Figure 5 shows the variation in
the coordination numbers of the silicon atoms during the
indentation process. This is consistent with the theoretical
coordination number of an atom in the β-silicon phase. It can
also be seen that the atoms that are six coordinated are formed
in the region just beneath the indentor during maximum
indentation. This is evident in figure 6, which shows the
coordination number of each silicon atom in the specimen at
different stages of the indentation. As a further investigation
into the nature of the phase transformation, the bond length
distributions of the atoms within the transformation zone

Figure 12. Number of atoms with specified nearest number of
neighbours against time. In this simulation, the indentor is
deliberately held at maximum indentation for 250 000 time steps,
denoted as the neutral regime, to show the stability of the
transformed β-silicon phase when Tersoff’s potential is used.

are calculated. The results of these calculations show that
during the indentation the average atomic distance between
the atoms that have undergone transformation changed from
2.35 Å (diamond cubic structure) to 2.43 and 2.58 Å (β-
silicon) (figure 7). From the simulation, it is found that the
change is due to the flattening of the tetrahedron structure
in diamond cubic silicon. The displacive transformation
at progressive time steps is demonstrated in figure 8. By
determining the spatial coordinates of the atoms, it is found
that these four atoms of the flattened tetrahedron and another
two atoms at a slightly further distance of 2.58 Å form
the six nearest neighbours of the six-coordinated atoms.
Figure 9 shows one of these atoms with its six nearest
neighbours. At maximum indentation, about 730 atoms
transform from the four-coordinated diamond cubic phase
to the six-coordinated β-silicon phase. A portion of the
transformed six-coordinated atoms beneath the indentor
obtained from the simulation is shown in figure 10. The atoms
form a repetitive crystal structure with lattice parameters
a = 4.684 Å and c = 2.585 Å. These parameters of the
new phase formed are in complete agreement with Donohue’s
description [25] of high-pressure β-silicon. The change of
structure from diamond cubic to β-silicon is accomplished
by displacing atoms along the c-axis with an increase in
bond length and a decrease in volume. Hence the present
simulation suggests that β-silicon forms beneath the indentor
in the compressive stress region through displacive phase
transformation during indentation.

To ensure that the β-silicon phase is not an intermediate
phase obtained due to the short simulation time, the indentor’s
position is kept unchanged for at least 250 000 time steps
at a stage with β-silicon formed (e.g. at the maximum
indentation). By determining the spatial coordinates of these
atoms, it is found that the β-silicon structure of atoms in the
transformed zone remains unchanged in that period of time.
The coordination number of the atoms is once again recorded
during the simulation. Figure 12 shows the variation in the
coordination number of the atoms with the number of time
steps. Clearly, the number of atoms that are six-coordinated
(β-silicon atoms) remains constant for the entire period when
the indentor’s position is held unchanged. This also indicates
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that the new phase formed is not an intermediate unstable
phase. However, when the indentor is unloaded, theβ-silicon
transforms to amorphous silicon, which will be discussed
later. This means that the β-silicon phase obtained is stable
as long as the required stress field is maintained.

Experimental studies [26–30] have shown that phase
transformation in silicon from its normal, diamond cubic
structure to the denser, β-silicon structure will take place
under pure hydrostatic pressure in the range of 11–12 GPa.
However, it was also found that under more complex
conditions, such as in indentation, the transformation
pressure may be reduced to as low as 8 GPa [7]. In
the present simulation, the maximum hydrostatic pressure
attained is 12 GPa, which is therefore consistent with these
experimental findings. The authors are currently looking into
an anisotropic stress criterion that might provide an even more
accurate prediction for phase transformation in silicon.

Referring once again to figure 4, it is also observed that
the crystalline order of the atoms is lost upon unloading of
the indentor (figure 4(d)), and a body-centred-tetragonal-
to-amorphous phase transformation has occurred. This is
consistent with the observation of Clarke et al [28], that
proposed a possible explanation for the formation of the
amorphous silicon after indentation in the present study. At
the relatively rapid unloading rate employed (40 m s−1) and
the non-hydrostatic constraint imposed on the transformed
region, the high-pressure, crystalline form cannot transform
back fast enough, and, without complications, the amorphous
phase forms metastably.

It is interesting to note that, within this amorphous re-
gion, most of the atoms are four coordinated with the excep-
tion of some atoms that are six coordinated. This suggests
that the amorphous phase consist of four-coordinated atoms
but without any long-range order. The six-coordinated atoms
are observed to be the crystallite remnants of the β-silicon
phase, maintaining the tetragonal body-centred crystal struc-
ture, interspersed within the amorphous region. Experimen-
tal findings also lend credence to this claim [30].

In his experiments with silicon specimens subjected
to hydrostatic pressure in a diamond-anvil pressure cell,
Minomura [31] found that the β-silicon-to-amorphous phase
transformation is in fact reversible. To examine whether this
is also the case in high-speed nano-indentation, a second
indentation is performed in the simulation. It is found
that the β-silicon phase could indeed have recovered upon
the second loading of the indentor. This conclusion is
drawn from the fact that there is once again an increase
in the number of six-coordinated atoms during the second
indentation (figure 6(d)). However, it can be seen from
figure 6(d) that the phase transformation during the second
indentation is heterogeneous, with mixing of tetragonal body
centred and amorphous phases. In addition to that, the β-
silicon structure obtained from the indentation of amorphous
silicon (the second indentation) is distorted compared to
that obtained from the indentation of diamond cubic silicon
during the first indentation. Figure 11 shows the six nearest
neighbours of the distortedβ-silicon structure. A comparison
between figures 9 and 11 shows the extent of the distortion.
This is also in agreement with the claims of Minomura in his
experiments with silicon specimens subjected to hydrostatic
pressure in a diamond-anvil pressure cell [31].

In the simulation, there is an absence of the body-centred
cubic structure that is expected upon unloading of the β-
silicon as observed by Hu and co-workers in their hydrostatic
loading tests [32]. This may be due to the fact that the
hydrostatic pressure under the indentor during loading is not
high enough to affect such a transformation upon unloading.
In this simulation, the maximum hydrostatic pressure under
the indentor is only 12 GPa. Minomura [31] stated that,
for silicon specimens subjected to pressure above 15 GPa,
transformation into the body-centred cubic structure occurs
on unloading. For pressure (11–15 GPa) lower than that,
the β-silicon will reversibly transform into the amorphous
phase as in the case for the present simulation. A theoretical
investigation on this issue is currently undergoing in the
authors’ research laboratory.

4. Conclusions

The present study has shown that the phase transformation
of silicon found experimentally in specimens loaded
under hydrostatic conditions also occurs for silicon
specimens under indentation at the nanometre level with
a high indentation speed. The transformation involves
a microstructural change from diamond cubic silicon
to a tetragonal body-centred structure upon loading of
the diamond indentor and a tetragonal-body-centred-to-
amorphous change upon unloading of the indentor. This
phase transformation could be reversible and a recovery of
the tetragonal body-centred phase is observed upon a second
loading of the indentor. Hence with the aid of molecular
dynamics simulation, the phase transformation of diamond
cubic silicon during indentation and the mechanism involved
in such a transformation are clearly shown.
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