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Effective wall thickness of a single-walled carbon nanotube
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This paper investigates the effective wall thickness of a single-walled carbon nanotube, a critical quantity for
any research in mechanics and property characterization of carbon nanotubes. To this end, the response of a
bundle of single-walled carbon nanotubes to external hydrostatic pressure was modeled using the ring theory
of continuum mechanics. The model predicted that the equivalent thickness should be 0.617 A. This in turn
clarified the dilemma of the inconsistent Young’s modulus of carbon nanotubes reported in the literature.
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. INTRODUCTION and axial compressioir:*214213 few studies have been done
on radial compressiot??>~26Tang and co-workefS tested

Since the discovery of carbon nanotubes a large numbe8WNT bundles in a diamond anvil cell under a hydrostatic
of experiments® and molecular dynamic (MD)  pressure up to 1.5 GF&ig. 1(@)] and measured the radial
simulation§~® were conducted on single-walled nanotubesdeformation in terms of the lattice constahi.e., the center-
(SWNT's) and multiwalled nanotube@MWNT’s). Notwith-  to-center distance between the nanotubes. They found that
standing their small size, discrete molecular structure, antinearly decreased with the external pressure. They also car-
wall thickness comprised of only a single layer of atoms,ried out theoretical calculations based on the Lennard- Jones
carbon nanotubes were found to behave similar to continuurpotential. The values of were reported to be in good agree-
structures and possess both membrane and bending capatient with the experiments. The present study will develop a
ties. Thus, it became eminent that equivalent continuuntontinuum mechanics model to predict the effective thick-
models, as a well established, faster and cheaper optiongss of a single-walled carbon nanotube and to discuss its
could be most useful in the analysis and prediction of theY¥oung’s modulus.
behavior of nanotubes. This led to extensive studies on the
equivalent or effective properties and geometrical dimen-

sions of a carbon nanotube, i.e., wall thicknéssYoung’s IIl. MODELING AND PREDICTION

modulusE, and Poisson’s ratip.. Nevertheless, the mechan-  consider the deformation of the central nanotube in a
i_cs modeling so far has been associated with strong assumgyndle of SWNT's subjected to an external pressyf€ig.

tions. For example, a carbon nanotube has been treated a3 @], it is postulated that the external pressure is transmitted
truss m8elr3nﬁe7r, a beanf, a thin shel*™** or a solid  tg the central nanotube through the surrounding ones. As the
cylinder™= external pressure compresses the bundle, the exterior tubes

To date, there is no agreement about the exact values of geform and the intertubular distandedecreases, inducing
E, andu of a carbon nanotube. Some studies assumed that@pylsive intertubular van der Waals forces. Since the dis-

nanotube was a solid cylind@t*'*Others considered thét  tance between the atoms of two neighboring tubes varies
was quﬂ }?1}3?9 interplanar spacing of graphite laygys circumferentially, the van der Waals forces must also vary. It
=3.4 A5 The equivalent Young's modulus was s hence reasonable to assume that the van der Waals forces
then calculated based on this/alue. While such an assump- haye a maximum value at the location with the shortest dis-
tion, h=dg, has its merit for MWNT's, it is rather ambigu- tanced [Fig. 1(b)].

ous for SWNT's. In contrast, Yakobson and co-worRete- Further, the compressive pressure between the tubes is
rived a much smaller value dfi=0.66 A in the case of considered to bpatw Po S|r‘]2 (30), which produces the face-
SWNT's through the calculation of the flexural rigidity ting observed in experiment&and hence is consistent with
Eh®/12(1- %) and in-plane stiffnes&h using the Tersoff-  the experimental loading conditions. The magnitysigis
Brenner potential, which is only one fifth of the commonly determined by equating the total load applied on one sixth of
adoptedh=3.4 A. The Young's modulus of a carbon nano- the circumference of an exterior tube and the total load ap-

tube was also reported to have a variety of values, rangingjied on 1/6th of the circumference of the central t(iba.
from 0.27 TPa for MWNT's (Ref. 3 to 55 TPa for 1(p)] ie.,

SWNT's® although most agreed th& was about 1 to 2
TPal®"The discrepancy in the values of the Poisson’s ratio
w reported in the literature was also big, varying from as low q(27R) _ fz”% i2(30)d 1
as 0.12(Ref. 20 to as large as 0.28 1t needs to be empha- 6 PosSIM(36)ds, @
sized that the inconsistency in the determination of the val-
ues of E is intrinsically related to the assumption of the
equivalent wall thickness.

Predominantly, the continuum mechanics theories for car-
bon nanotubes were applied to bendirg axial tensiorf:® Po=207. 2)

which leads to
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As a result, the total radial load on one tube is the same as if
the tube were submerged into the pressure medium in an
isolated state.

Since the nanotubes in a bundle are long and the load (a)
along the tube axis is quite uniform, a nanotube is under
plane-strain deformation and can be modeled as a thin ring
with a mean radiu®, a thickness in the radial direction,
and a unit width in the axial directiofFig. 1(c)]. When the
external pressure is statically applied and the material is lin-
early elastic, the radial and tangential displacements of the
ring under small deformatiorw andv, can be described as
(see the Appendix for derivation details

w(60)=Wy+W, cognéb),

v(6)=V,sin(no), €©)]

wheren=6 andW, and V,are defined in Eq(A6). The ®)
above equation shows that the radial deformation is de-
scribed by six circumferential waves. The wavy pattern of
the radial displacement distorts the initial circular cross sec-
tion of the tube.
Tanget al?® reported two measures for the faceting of a
nanotube cross sectioftt) a distortion ratioz, which is the
ratio of the shortest radiu$=) to the longest radius™) [see
their definitions in Fig. b) and Eq.(A7)] and(2) the lattice
constant, which is the center-to-center distance between the
tubes[defined in Fig. 1a) and Eq.(A8)]. At the zero external
pressure it was found thaj,=0.991 andé,=17.13 A. At (c)
the maximum external pressuigg=1.5 GPa in their test,
715 gpa=0.982 andé; s gp=16.89 A. These measured pa-
rameters can be used to determine the unknown parameters
h, E, andR in the model derived above.
Applying Egs.(A9) and (A10), the longest and shortest
radii at zero external pressure are obtained ras’
=7.073 A andr{™)=7.0096 A. When the external pressure FIG. 1. (8 Nanobundle geometry and external pressure on the

becomes 1.5 GPa{y)=7.08 A andr{y)=6.953 A. Equa- entire triangular tube lattice, wheR is the radius of an isolated
tion (All) then gives rise tow,,=0.03183 A, R+Wy,  nanotube¢ the lattice constan the equilibrium distance between
=7.0414, W,,15=0.06372 A, andR+ W, 15=7.0167 A.  the nanotubesq the circumferential coordinate, amgis the exter-
On the other hand, EqA13) leads toR/h=11.446 and nal pressure on the nanobundle) Load on a 1/6th of a nanotube.
henceR=7.066 A according to Eq(A15). Thus, the ring (c) Partial cross section of a nanotube, whegeis the theoretical
thickness is predicted to de=0.617 A, which is 43.8% of diameter of a carbon atom aidis the equivalent thickness of the
the theoretical diameter of a carbon atdin42 A) and is  nanotube.
close to the thickness 0.66 A calculated by Yakobeoal®
by MD simulations. With the knowiR/h, Eq. (A14) yields librium of a nanotube is considered. A cross section of a real
R/E=1.44675 (10 mm/N). Thus, the Young’s modulus nanotube contains only a limited number of atoms. Under an
of the nanotube is 4.88 TPa, which is also close to the moexternal load, stresses in the tube are transmitted through
lecular dynamics estimation of 5.5 TPadaving the geo- these atoms, while in a continuum mechanics model the
metrical and material parameters, one can obtain the genesame stresses are transmitted through the continuous wall
alized degrees of freedordv, and V, varying with the area. As a result, the wall thickness must be smaller than the
external pressure. The lattice constdman therefore be de- atom diameter; otherwise, the tube equilibrium cannot be
termined by Eq(A8). Figure 2 shows that the model predic- maintained. In this sense, calculations using continuum mod-
tion is identical to the MD result® which are very close to els that apply wall thickness greater than or equal to the
the experimental measuremefitsin the calculations, the diameter of a carbon atom, can give incorrect answer.
equilibrium distance between the adjacent nanotybég. The problem of the effective wall thickness outlined
1(a)] d is the same as given by Taegal2® above also leads to the problem in the Young's modulus
It is expected that the effective wall thickness of a con-characterization of carbon nanotubes. For instance, when the
tinuous nanotube must be smaller than the theoretical dianm¥oung’s modulusE is obtained by examining the axial rigid-
eter of a carbon atom. This is understandable when the equity C of a nanotube, which is proportional to the wall thick-
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17.15

v'+w
17.1 1 ——— Model predictions e R ’
17.05 4 . Molecular dynamics, Tang et al
- (v—w")’
< 17 k= —Rz ) (A2)
up
16.93 9 where the prime means a derivation with respec#ido
16.9 - calculateV, andW,, in Eq. (Al),the principle of stationary
potential energy can be used. This principle states that in
16.85 . : ‘ : : : : . g : .
static equilibrium the potential energy of the ridg=U
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

+W is minimum, wherédJ is the strain energy and/ is the
work done by the external load on the ring. The strain energy

Extemal hydrostatic pressure (GPa) U in the present case can be determined as
FIG. 2. Lattice constanf vs external hydrostatic pressure. 1 1
U=§EARJ 82d0+§E|Rf k?d 6, (A3)

ness C~Eh), E cannot be correct if an inappropridteis

used, even whe@ is accurately measured. If a bending testwhereA=bh is the cross-sectional area andbh®/12 is the

is used to characteriz€, the bending rigidityD, which is  second moment of inertia of the ring cross section. The work
proportional toh® (D~Eh®), is often used. Again, because done by a pressure normal to the deformed surfagelro-

of the incorrecth, the diverseE values reported in the lit- static pressueis only associated with the radial displace-
erature are unavoidable. ment. Hence,

2m
SUMMARY W=R . p(6)wdé. (A4)

The model developed in the present paper predicts th - : - . : . o
the effective thickness of a single-walled carbon nanotube %tcsscv?,ir;ﬂ'?gggggtgﬁngnﬂ'\r}'m{;? ;rtga: gs partial deriva
n n 1 e

h=0.617 A, which is 43.8% of the theoretical diameter of a
carbon atom, and that the Young's modulus of the tube is Il

4.88 TPa. The prediction is based on a direct measurement of W =0,
a nanotube deformation and is reliable. This in turn clarifies 0
the dilemma of the diverse Young’s modulus reported previ- Il
ously in the literature. =0,n=6,12,18,...
ﬁWn L) 1 1 L 1
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This results in a set of simultaneous linear algebraic equa-
APPENDIX tions for W, andV,,, which solved leads to
1. Modeling W (Pt p0/2)R2
The radial and tangential displacement componewts, 0~ EA '
andv, of a linear extensional ring can be expressed as
~ poR? |
W“_2E|(n?—1)7(1+ AR (A6)

w(0)=§0) W, cogné),

V=

poR? AR?
T2EANZ—12\" T )

wheren= 6. Equation(A6) indicates that only the sixth har-
monic contributes. The radial displacement distribution rep-
where an outwardv is positive. Considering the displace- resents closely the hexagonal distortion in the cross-sectional
ment boundary conditions of symmetry abo##=0° and area of the individual tubes in the bundle, with flattened sides
angles multiple of 30°, the only nonzero radial displace-against each other, as illustrated in Figb)1 Therefore, the
ments are those with=0, 6, 12, 18,..., and the only nonzero variation of the circumferential pressure, governed by
tangential displacements are those with 6, 12, 18,.... sir?(36), provides the right displacement distribution ob-

When the ring is under small deformation its circumfer- served in both experiments and molecular dynamics simula-
ential direct strain of the centroidal axisand the curvature tions. Equation(A6) clearly shows thaw,, andV, depend
change of the centroidal axisare’’ on R/E andR/h.

v(a)=§ V,sin(ng), (A1)
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2. Parameters determination rG) (<)
The faceting of the cross section is meastftadterms of Rt+Wo= 2 (ALL)
the distortion ration and the lattice constart Since the response of the ring is linear, superposition is al-
r (<) lowed. The difference between the displacements at zero ex-
7= ey ternal pressureW,, and W, o and those ap,=1.5 GPa,
Wp 15 andW, ; 5, can be expressed as
S =R+Wp—W,, (A7) W Po RR[lz(R '
— —— e — — p— +
n,q n,0 2_1)\2 ’
rG)=R+Wy+W, 2b(n“=1)"E h h
+po2 RR
£=2r9+d, (A8) (R+Wpg)— (R+Wp o) =— —pa"“bpo En- (A12)
wherer (<) is the shortest radius and™) is the longest ra-
dius of the distorted cross section.jf & andd are given for ~Hence, forpa,;=0 one gets
R Wo. ancW, a5 explained beio. From £, allows. A o[ e ET RS
1 1 X I W- 0 I W _—= — — ,
that h | 12| (R+Woo— (R Woy)
¢—d R__, (R+Woo) —(R+Wog)
r(<):T’ (A9) E 2b R . (A14)

Potr
and from Eq.(A7) for a giveny h
Further,R can be found using Eq$A6), (A13)—(A14), i.e.,

(<)
(=" (A10) riV el =l (n2-1)2
n = > + 5 Rz (A15)
With the knownr(=) andr(*), Egs. (A7), (A9), and(A10) 12(H +1
lead to
>)_ (<) With the obtained value oR, the wall thicknes$r and the
W ot Young's modulus are determined by Eqs(A13) and
n 2 ' (A14), respectively.
*E-mail address: 1zha9252@mail.usyd.edu.au 15E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Phys. Rev. Lett.

1J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. 80, 4502(1998.
Kilik, T. Stockli, N. A. Burnham, and L. Forro, Phys. Rev. Lett. 6J. P. Lu, Phys. Rev. Letf9, 1297(1997.

82, 944(1999. 17A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M.
2M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, Phys. Rev. Lett. M. J. Treacy, Phys. Rev. B8, 14 013(1998.
84, 5552(2000. 83, P. Lu, J. Phys. Chem. Solid@8, 1649(1997).
3M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. °C. Thomsen, S. Reich, H. Jantoljak, I. Loa, K. Syassen, M.
Ruoff, Science287, 637 (2000. Burghard, G. S. Duesberg, and S. Roth, Appl. Phys. A: Mater.
4E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Appl. Phys. A:  Sci. Process69, 309 (1999.
Mater. Sci. Proces$8, 287 (1999. 20D, Sanchez-Portal, E. Artacho, and M. J. Soler, Phys. Red0,B
ST. Ozaki, Y. lwasa, and T. Mitani, Phys. Rev. Le84, 1712 12 678(1991).
(2000. 21C. Q. Ru, Phys. Rev. B2, 16 962(2002.
6B. 1. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Z68tt.  22Y. Xia, M. Zhao, Y. Ma, M. Ying, X. Liu, P. Liu, and L. Mei,
2511(1996. Phys. Rev. B65, 155415(2002.
’G. M. Odegard, T. S. Gates, L. M. Nicholson, and K. E. Wise 23S. Reich, C. Thomsen, and P. Ordejon, Phys. Re§5B8153407
(unpublished (2002.
8E. W. Wong, P. E. Sheehan, and C. M. Lieber, Scie?itg 1971  2*S. M. Sharma, S. Karmakar, S. K. Sikka, P. V. Teredesai, A. K.
(1997. Sood, A. Govindaraj, and C. N. R. Rao, Phys. Re83205417
9C. Q. Ru, Phys. Rev. B2, 9973(2002. (2002).
10C. Q. Ru, Phys. Rev. B2, 10 405(2000. 25U, D. Venkateswaran, A. M. Rao, E. Richter, M. Menon, A. Rin-
e, Q. Ru, J. Appl. Phys39, 3426(2002). zler, R. E. Smalley, and P. C. Eklund, Phys. Re\6® 10 928
2C. Q. Ru, J. Mech. Phys. Solid, 1265 (2001). (1999.
133, Govindjee and J. L. Sackman, Solid State Comnidf, 227  2%J. Tang, L.-C. Qin, T. Sasaki, M. Yudasaka, A. Matsushita, and S.
(1999. lijima, Phys. Rev. Lett85, 1887(2000.
c. F. Cornwell and L. T. Wille, Solid State Commuh01, 555 2TM. Farshad Stability of Structure$Elsevier Science, Amsterdam,
(1997. 1994.

165401-4



