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Effective wall thickness of a single-walled carbon nanotube
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This paper investigates the effective wall thickness of a single-walled carbon nanotube, a critical quantity for
any research in mechanics and property characterization of carbon nanotubes. To this end, the response of a
bundle of single-walled carbon nanotubes to external hydrostatic pressure was modeled using the ring theory
of continuum mechanics. The model predicted that the equivalent thickness should be 0.617 Å. This in turn
clarified the dilemma of the inconsistent Young’s modulus of carbon nanotubes reported in the literature.
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I. INTRODUCTION

Since the discovery of carbon nanotubes a large num
of experiments1–3 and molecular dynamic ~MD!
simulations4–6 were conducted on single-walled nanotub
~SWNT’s! and multiwalled nanotubes~MWNT’s!. Notwith-
standing their small size, discrete molecular structure,
wall thickness comprised of only a single layer of atom
carbon nanotubes were found to behave similar to continu
structures and possess both membrane and bending ca
ties. Thus, it became eminent that equivalent continu
models, as a well established, faster and cheaper op
could be most useful in the analysis and prediction of
behavior of nanotubes. This led to extensive studies on
equivalent or effective properties and geometrical dim
sions of a carbon nanotube, i.e., wall thicknessh, Young’s
modulusE, and Poisson’s ratiom. Nevertheless, the mechan
ics modeling so far has been associated with strong assu
tions. For example, a carbon nanotube has been treated
truss member,7 a beam,8 a thin shell,6,9–12 or a solid
cylinder.8,13,14

To date, there is no agreement about the exact values oh,
E, andm of a carbon nanotube. Some studies assumed th
nanotube was a solid cylinder.8,13,14Others considered thath
was equal to the interplanar spacing of graphite layersdg
53.4 Å.2–4,11,15–19 The equivalent Young’s modulus wa
then calculated based on thish value. While such an assump
tion, h5dg , has its merit for MWNT’s, it is rather ambigu
ous for SWNT’s. In contrast, Yakobson and co-workers6 de-
rived a much smaller value ofh50.66 Å in the case of
SWNT’s through the calculation of the flexural rigidit
Eh3/12(12m2) and in-plane stiffnessEh using the Tersoff-
Brenner potential, which is only one fifth of the common
adoptedh53.4 Å. The Young’s modulus of a carbon nan
tube was also reported to have a variety of values, rang
from 0.27 TPa for MWNT’s ~Ref. 3! to 5.5 TPa for
SWNT’s,6 although most agreed thatE was about 1 to 2
TPa.1,8,17The discrepancy in the values of the Poisson’s ra
m reported in the literature was also big, varying from as l
as 0.12~Ref. 20! to as large as 0.28.18 It needs to be empha
sized that the inconsistency in the determination of the v
ues of E is intrinsically related to the assumption of th
equivalent wall thickness.

Predominantly, the continuum mechanics theories for c
bon nanotubes were applied to bending,8,13 axial tension,2,3
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and axial compression;9–12,14,21a few studies have been don
on radial compression.19,22–26Tang and co-workers26 tested
SWNT bundles in a diamond anvil cell under a hydrosta
pressure up to 1.5 GPa@Fig. 1~a!# and measured the radia
deformation in terms of the lattice constantj, i.e., the center-
to-center distance between the nanotubes. They found thj
linearly decreased with the external pressure. They also
ried out theoretical calculations based on the Lennard- Jo
potential. The values ofj were reported to be in good agre
ment with the experiments. The present study will develo
continuum mechanics model to predict the effective thic
ness of a single-walled carbon nanotube and to discus
Young’s modulus.

II. MODELING AND PREDICTION

Consider the deformation of the central nanotube in
bundle of SWNT’s subjected to an external pressureq @Fig.
1~a!#. It is postulated that the external pressure is transmi
to the central nanotube through the surrounding ones. As
external pressure compresses the bundle, the exterior t
deform and the intertubular distanced decreases, inducing
repulsive intertubular van der Waals forces. Since the d
tance between the atoms of two neighboring tubes va
circumferentially, the van der Waals forces must also vary
is hence reasonable to assume that the van der Waals fo
have a maximum value at the location with the shortest d
tanced @Fig. 1~b!#.

Further, the compressive pressure between the tube
considered to bepatm1p0 sin2 ~3u!, which produces the face
ting observed in experiments,26 and hence is consistent wit
the experimental loading conditions. The magnitudep0 is
determined by equating the total load applied on one sixth
the circumference of an exterior tube and the total load
plied on 1/6th of the circumference of the central tube@Fig.
1~b!#, i.e.,

q~2pR!

6
5E

0

2pR/6

p0 sin2~3u!ds, ~1!

which leads to

p052q. ~2!
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As a result, the total radial load on one tube is the same a
the tube were submerged into the pressure medium in
isolated state.

Since the nanotubes in a bundle are long and the l
along the tube axis is quite uniform, a nanotube is un
plane-strain deformation and can be modeled as a thin
with a mean radiusR, a thicknessh in the radial direction,
and a unit width in the axial direction@Fig. 1~c!#. When the
external pressure is statically applied and the material is
early elastic, the radial and tangential displacements of
ring under small deformation,w andv, can be described a
~see the Appendix for derivation details!:

w~u!5W01Wn cos~nu!,

v~u!5Vn sin~nu!, ~3!

where n56 and Wn and Vnare defined in Eq.~A6!. The
above equation shows that the radial deformation is
scribed by six circumferential waves. The wavy pattern
the radial displacement distorts the initial circular cross s
tion of the tube.

Tanget al.26 reported two measures for the faceting of
nanotube cross section:~1! a distortion ratioh, which is the
ratio of the shortest radiusr (,) to the longest radiusr (.) @see
their definitions in Fig. 1~b! and Eq.~A7!# and~2! the lattice
constantj, which is the center-to-center distance between
tubes@defined in Fig. 1~a! and Eq.~A8!#. At the zero external
pressure it was found thath050.991 andj0517.13 Å. At
the maximum external pressureq51.5 GPa in their test
h1.5 GPa50.982 andj1.5 GPa516.89 Å. These measured p
rameters can be used to determine the unknown param
h, E, andR in the model derived above.

Applying Eqs.~A9! and ~A10!, the longest and shortes
radii at zero external pressure are obtained asr 0

(.)

57.073 Å andr 0
(,)57.0096 Å. When the external pressu

becomes 1.5 GPa,r 1.5
(.)57.08 Å andr 1.5

(,)56.953 Å. Equa-
tion ~A11! then gives rise toWn,050.03183 Å, R1W0,0
57.041 Å, Wn,1.550.06372 Å, andR1W0,1.557.0167 Å.
On the other hand, Eq.~A13! leads toR/h511.446 and
henceR57.066 Å according to Eq.~A15!. Thus, the ring
thickness is predicted to beh50.617 Å, which is 43.8% of
the theoretical diameter of a carbon atom~1.42 Å! and is
close to the thickness 0.66 Å calculated by Yakobsonet al.6

by MD simulations. With the knownR/h, Eq. ~A14! yields
R/E51.44675 (10213 mm3/N). Thus, the Young’s modulus
of the nanotube is 4.88 TPa, which is also close to the m
lecular dynamics estimation of 5.5 TPa.6 Having the geo-
metrical and material parameters, one can obtain the ge
alized degrees of freedomWn and Vn varying with the
external pressure. The lattice constantj can therefore be de
termined by Eq.~A8!. Figure 2 shows that the model predi
tion is identical to the MD results,26 which are very close to
the experimental measurements.26 In the calculations, the
equilibrium distance between the adjacent nanotubes@Fig.
1~a!# d is the same as given by Tanget al.26

It is expected that the effective wall thickness of a co
tinuous nanotube must be smaller than the theoretical di
eter of a carbon atom. This is understandable when the e
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librium of a nanotube is considered. A cross section of a r
nanotube contains only a limited number of atoms. Under
external load, stresses in the tube are transmitted thro
these atoms, while in a continuum mechanics model
same stresses are transmitted through the continuous
area. As a result, the wall thickness must be smaller than
atom diameter; otherwise, the tube equilibrium cannot
maintained. In this sense, calculations using continuum m
els that apply wall thickness greater than or equal to
diameter of a carbon atom, can give incorrect answer.

The problem of the effective wall thickness outline
above also leads to the problem in the Young’s modu
characterization of carbon nanotubes. For instance, when
Young’s modulusE is obtained by examining the axial rigid
ity C of a nanotube, which is proportional to the wall thic

FIG. 1. ~a! Nanobundle geometry and external pressure on
entire triangular tube lattice, whereR is the radius of an isolated
nanotube,j the lattice constant,d the equilibrium distance betwee
the nanotubes,u the circumferential coordinate, andq is the exter-
nal pressure on the nanobundle.~b! Load on a 1/6th of a nanotube
~c! Partial cross section of a nanotube, wheredc is the theoretical
diameter of a carbon atom andh is the equivalent thickness of th
nanotube.
1-2
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ness (C;Eh), E cannot be correct if an inappropriateh is
used, even whenC is accurately measured. If a bending te
is used to characterizeE, the bending rigidityD, which is
proportional toh3 (D;Eh3), is often used. Again, becaus
of the incorrecth, the diverseE values reported in the lit-
erature are unavoidable.

SUMMARY

The model developed in the present paper predicts
the effective thickness of a single-walled carbon nanotub
h50.617 Å, which is 43.8% of the theoretical diameter o
carbon atom, and that the Young’s modulus of the tube
4.88 TPa. The prediction is based on a direct measureme
a nanotube deformation and is reliable. This in turn clarifi
the dilemma of the diverse Young’s modulus reported pre
ously in the literature.
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APPENDIX

1. Modeling

The radial and tangential displacement componentsw
andv, of a linear extensional ring can be expressed as

w~u!5(
0

`

Wn cos~nu!,

v~u!5(
0

`

Vn sin~nu!, ~A1!

where an outwardw is positive. Considering the displace
ment boundary conditions of symmetry aboutu50° and
angles multiple of 30°, the only nonzero radial displac
ments are those withn50, 6, 12, 18,..., and the only nonze
tangential displacements are those withn56, 12, 18,... .

When the ring is under small deformation its circumfe
ential direct strain of the centroidal axis« and the curvature
change of the centroidal axisk are27

FIG. 2. Lattice constantj vs external hydrostatic pressure.
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k5
~v2w8!8

R2 , ~A2!

where the prime means a derivation with respect tou. To
calculateVn and Wn in Eq. ~A1!,the principle of stationary
potential energy can be used. This principle states tha
static equilibrium the potential energy of the ringP5U
1W is minimum, whereU is the strain energy andW is the
work done by the external load on the ring. The strain ene
U in the present case can be determined as

U5
1

2
EARE «2du1

1

2
EIRE k2du, ~A3!

whereA5bh is the cross-sectional area andI 5bh3/12 is the
second moment of inertia of the ring cross section. The w
done by a pressure normal to the deformed surface~hydro-
static pressure! is only associated with the radial displac
ment. Hence,

W5RE
0

2p

p~u!wdu. ~A4!

The condition forP being minimum is that its partial deriva
tives with respect toWn andVn are zero, i.e.,

]P

]W0
50,

]P

]Wn
50,n56,12,18,...,

]P

]Vn
50,n56,12,18,... . ~A5!

This results in a set of simultaneous linear algebraic eq
tions for Wn andVn , which solved leads to

W052
~patm1p0/2!R2

EA
,

Wn5
p0R4

2EI~n221!2 S 11
I

AR2D , ~A6!

Vn52
p0R2

2EA~n221!2 S n2
AR2

nI D ,

wheren56. Equation~A6! indicates that only the sixth har
monic contributes. The radial displacement distribution re
resents closely the hexagonal distortion in the cross-secti
area of the individual tubes in the bundle, with flattened sid
against each other, as illustrated in Fig. 1~b!. Therefore, the
variation of the circumferential pressure, governed
sin2(3u), provides the right displacement distribution o
served in both experiments and molecular dynamics sim
tions. Equation~A6! clearly shows thatWn and Vn depend
on R/E andR/h.
1-3
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2. Parameters determination

The faceting of the cross section is measured26 in terms of
the distortion ratioh and the lattice constantj:

h5
r (,)

r (.) ,

r (,)5R1W02Wn , ~A7!

r (.)5R1W01Wn

j52r (,)1d, ~A8!

wherer (,) is the shortest radius andr (.) is the longest ra-
dius of the distorted cross section. Ifh, j, andd are given for
a particular load, then from Eqs.~A7!, ~A8! one can calculate
R, W0 , andWn as explained below. From Eq.~A8! it follows
that

r (,)5
j2d

2
, ~A9!

and from Eq.~A7! for a givenh

r (.)5
r (,)

h
. ~A10!

With the knownr (,) and r (.), Eqs.~A7!, ~A9!, and ~A10!
lead to

Wn5
r (.)2r (,)

2
,
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Since the response of the ring is linear, superposition is
lowed. The difference between the displacements at zero
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R

h
5H 1

12F ~n221!2~Wn,q2Wn,0!

~R1W0,0!2~R1W0,q!
21G J , ~A13!

R

E
52b

~R1W0,0!2~R1W0,q!

p0
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Further,R can be found using Eqs.~A6!, ~A13!–~A14!, i.e.,

R5
r 0

(.)1r 0
(,)

2
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With the obtained value ofR, the wall thicknessh and the
Young’s modulusE are determined by Eqs.~A13! and
~A14!, respectively.
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