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Wrinkling was observed for a circular monolayer graphene sheet in nanoindentation based on molecular-
dynamics simulations. The mechanics fundamentals of this phenomenon were then explored using a two-
dimensional plate model. It was found that the graphene wrinkles when the indentation depth reaches a critical
value, the wrinkling is induced by the circumferential compression in the graphene, and the bending stiffness
of the graphene sheet plays an essential role in stabilizing its one-atom layer nanostructures. It was shown that
bending stiffness and in-plane stiffness are key indicators that signify the intrinsic mechanical properties of a
graphene.

DOI: 10.1103/PhysRevB.80.155445 PACS number�s�: 61.46.�w, 31.15.xv, 62.25.�g

I. INTRODUCTION

Since the late 1980s, nanoscale carbon materials, such as
bucky balls1 and carbon nanotubes �CNTs�,2,3 have been
found to have superior mechanical, electrical, and thermal
properties to many classical materials. This has led to exten-
sive discussions about the potential applications of these car-
bon materials1,4,5 and has brought about a significant wave of
investigations for a precise characterization of their
properties.6–11 Recently, a new member of carbon family,
monolayer graphene flakes, has been synthesized12 and their
mechanical properties have attracted considerable
attention.13–22 It was reported15 that the graphene flakes
could be the strongest material ever obtained in terms of
their elastic stiffness and fracture strength. They can also be
used as nanoresonators with the vibration frequency up to
terahertz.17,19,21 On the other hand, Meyer et al.23 in their
TEM study reported the rippled surface, caused by the struc-
tural instability, of a suspended graphene, which can signifi-
cantly degrade the Dirac spectrum and electronic properties
of the graphene. Hence, understanding the mechanics of the
structural instability of a graphene is of primary
importance.23–26 This, however, requires that a suitable me-
chanics analysis be carried out to reveal the deformation
mechanisms and capture the key factors that are responsible
for the structural instability of a graphene.

There are some critical fundamental issues with respect to
the validity of the characterization methods used that could
have incorrectly estimated the mechanical properties of a
monolayer graphene. For example, in their nanoindentation
studies, Lee, et al.14 treated a suspended graphene sheet as a
membrane of a fictitious thickness without any bending re-
sistance, but Hemmasizadeh15 and Dun and Wang22 consid-
ered the sheet as a thin plate with a nonzero bending stiff-
ness, leading to different mechanics interpretations. Lee et
al.14 explained that the linear term in equation p=��w0�
+��w0�3 �p is the transverse load, w0 is indentation depth
defined as the transverse displacement at the center of the
graphene tested, and � and � are real coefficients� was a
result of the high residual stress in the graphene. However,
Hemmasizadeh14 concluded that it was due to the contribu-
tion of the graphene’s bending stiffness. In addition, when

using a continuum mechanics theory to analyze a monolayer
graphene, e.g., an elastic membrane or an elastic thin plate
theory, there are conceptual problems such as the “effective
thickness” and “effective Young’s modulus” as have been
extensively addressed in the mechanical characterization of
single-walled carbon nanotubes.6,10,11,27 These “effective
quantities” in continuum mechanics may not exist at the
nanoscopic scale for describing the properties of a carbon
nanomaterial because the conventional continuum mechanics
does not involve the atomic structure of a material, and, in
principle, is not applicable to a nanoscale structure since the
fundamental assumptions on which the continuum mechan-
ics theory is based �e.g., the continuity of a material� is no
longer valid at the nanoscopic scale. Thus to correctly inter-
pret the experimental observations,15,23,24 it is essential to
find out proper indicators that can reflect correctly the intrin-
sic properties of a graphene.

II. MOLECULAR-DYNAMICS SIMULATION

Motivated by the aforementioned earlier studies we have
performed a nanoindentation on a circular graphene sheet
based on molecular-dynamics �MD� simulation, an essential
theoretical tool for property characterization of
nanomaterials.28–33 It has been shown that MD can provide
an accurate description to the buckling29,34 and vibration
properties35,36 of CNTs, and the phase transformation behav-
ior of silicon.37 As a result, it has often been utilized as a
reference to validate the equivalent continuum mechanics
models for nanomaterials, where the atomic structures of the
materials are ignored.28,38,39 In our MD analysis, the interac-
tions between the graphene carbon atoms were modeled by
the Tersoff-Brenner potential40,41 and the interactions be-
tween the diamond indenter tip and the graphene were mod-
eled by the Lennard-Jones potential.42 As pointed out in our
previous study43 on CNTs, a proper use of a thermostat
scheme in an MD simulation is critical to producing mean-
ingful results. Therefore in this work, we applied Berendsen
thermostat on all the atoms and kept the simulation at the
temperature of 300 K.

In the nanoindentation �Fig. 1�, a load is applied by an
indenter tip of diameter 0.535 nm at the center of a circular
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graphene of radius 16 nm. This load can be reasonably con-
sidered as a point load because the indenter diameter is much
smaller than that of the graphene sheet. The boundary of the
graphene is simply supported, i.e., the boundary atoms can-
not move in the direction normal to the r-� plane �Fig. 1�,
but can move freely within the plane, where r is the radial
coordinate and � is the circumferential angular coordinate.
The simulation showed that the indentation depth �w0� in-
creases with the rising indentation force �p�. When w0
reaches a critical value of around 0.7 nm, wrinkling, i.e., the
ripplelike transverse deflection, suddenly emerges. The wrin-
kling displacement at w0=1.1 nm is shown in Fig. 2�a� as a
function of r and �, which demonstrates that the ripplelike
deflection is �almost� zero in the vicinity of the graphene
center �r=0�, increases with the increment of r, and reaches
its maximum in the interval of r=9–11 nm. The wrinkling
displacement then decreases monotonically to zero at the
simply supported boundary of the graphene �r=16 nm�. A
further increment of w0 after the initial wrinkling leads to
greater ripplelike displacements and a larger number of
waves �ripples� in the circumferential direction �Fig. 2�b��.
The postwrinkling mode �at w0=8.2 nm� predicted by the
MD simulation is shown in Fig. 3. Here the MD simulation
indicates that the graphene behaves fundamentally differ-
ently from a membrane without a bending stiffness, because
a membrane would wrinkle whenever a compressive stress is
generated and does not have a critical wrinkling load.44 Such
an initial wrinkling behavior predicted based on MD simula-
tion is in agreement with the recent experiment observation
that there exists a critical wrinkling load for graphene.45 It is
thus concluded that a thin elastic plate theory with a nonzero
bending stiffness is more appropriate than a membrane. This
implication is consistent with the analyses of CNTs,11,46

where single-walled CNTs as curved graphene sheets are
found to be approximately equivalent to elastic thin shells.
These unique features necessitate an investigation into the
mechanics of the graphene wrinkling detailed below, which
will develop a suitable mechanics model for graphene sheet
and provide essential information for clarifying the funda-
mental issues in characterizing monolayer carbon nanomate-
rials under the umbrella of continuum mechanics.

III. CONTINUUM MECHANICS ANALYSIS

It has been shown that the deformation of a graphene
sheet is controlled by four stiffnesses via a set of two-

dimensional �2D� constitutive relations:11,27,46 in-plane ex-
tension stiffness Kextension, in-plane torsion stiffness Ktorsion,
bending stiffness Dbending, and off-plane torsion stiffness
Dtorsion, which can be measured directly in atomistic simula-
tions without defining the effective thickness of the
graphene. Dbending and Dtorsion quantify the resistance of a
graphene to the changes of the off-plane � bonds due to
off-plane deformation �e.g., bending�, while Kextension and

FIG. 1. �Color online� Side view of a circular graphene at an
indentation depth of w0=4.5 nm; simply supported boundary atoms
are shown in black.

(b)

(a)

FIG. 2. �Color online� Wrinkling displacement observed in MD
simulation. �a� The distribution of wrinkling displacement when r
increases from 1 to 15 nm, which is recorded when w0=1.1 nm. �b�
The wrinkling displacement at r=11 nm and �=0° –360°, which
increases when indentation depth w0 rises from 0.7 to 2.1 nm.

FIG. 3. �Color online� The wrinkling mode of a simply sup-
ported monolayer graphene under a central indentation predicted by
MD simulation. Note the deflection is enlarged for illustration
purpose.
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Ktorsion reflect its resistance to the variation in the in-plane �
bonds induced by in-plane deformation �e.g., in-plane
stretching�.11,46,47 These deformation mechanisms are sub-
stantially different from those of a three-dimensional �3D�
thin plates/shell where the in-plane stretching is uniformly
distributed across plate/shell thickness and the bending is
caused by the linearly distributed stresses across the thick-
ness. Consequently, the four elastic stiffnesses of graphene
sheets do not necessarily satisfy the compatibility condition
of a 3D continuum plate/shell structure, Kextension /Dbending
=Ktorsion /Dtorsion, which is the existence condition of well-
defined effective thickness and equivalent Young’s modulus
of one-atom layer nanostructures.11 In other words, a mono-
layer graphene may not have an effective thickness or an
effective Young’s modulus.10,11 This also means that it is the
unique deformation mechanisms of a discrete material, rather
than its material discontinuity, that limit the applicability of a
3D continuum mechanics theory in nanomechanics. There-
fore, in this paper a monolayer graphene will be treated as a
2D material whose intrinsic mechanical properties are char-
acterized by the above four independent material constants.
In what follows, this 2D plate model will be employed for
the wrinkling analysis of the graphene studied by the MD
simulation introduced above, where the deformation is pri-
marily determined by the material constants Dbending and
Kextension.

When using the energy method considering both stretch-
ing and bending of the graphene, the condition for the onset
of wrinkling is48

�W = �U , �1�

where �W=�W1+�W2 in which �W1 is the work done by
the in-plane forces at the graphene boundary and �W2 is the
work done by the transverse forces and bending moments. In
Eq. �1�, �U=�U1+�U2+�U3, where �U1 and �U2 are the
stretching energy due to the in-plane and off-plane displace-
ments, respectively, and �U3 is the energy due to bending.
Under the present loading and boundary conditions, �W1
=�U1 �Ref. 48� and �W2=0. The latter is true because no
bending moment is applied and the transverse displacement
due to initial wrinkling is zero at the center49 �also see in Fig.
2�a�� and at the graphene boundary. Equation �1� then re-
duces to

�U2 + �U3 = 0, �2�
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and Nr�	 ,wo� and N��	 ,wo� �where 	=r /R� �Appendix A of
Ref. 50� are the radial and circumferential membrane forces
at the onset of wrinkling.48,51 Based on the wrinkling mode
predicted by the MD simulation described above, it is rea-

FIG. 4. The value of prewrinkling indentation depth w0 against
the corresponding circumferential wave number n of wrinkling. For
bending stiffness Dbending=0.85 eV, 1 eV and 2 eV �Ref. 10� the
critical wrinkling value of w0 increases from 1.78 nm, to 1.93 nm,
and to 2.73 nm.

FIG. 5. The wrinkling mode predicted by the 2D plate
model.

FIG. 6. The distribution of prewrinkling axis-symmetric mem-
brane forces Nr and N� of a simply supported circular graphene
sheet whose boundary is free to move in r-� plane. Here Q
= �Kextension ·w0

2� /R2.
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sonable to assume that the wrinkling displacement for the
energy calculation in Eq. �2� is w=Af�	 ,��, where A is a
displacement amplitude. This wrinkling displacement distri-
bution satisfies the simply supported boundary conditions en-
forced on the graphene. Substituting Nx�	 ,w0�, N��	 ,w0�,
and w�	 ,�� into Eq. �2� yields �Appendix B of Ref. 50�

�w0�cr = B� Dbending

Kextension
, �3�

where �wo�cr represents the critical value of wo at the onset of
wrinkling; B is a coefficient varying with the imposed
boundary condition. Equation �3� shows that �wo�cr is deter-
mined by Dbending /Kextension but independent of the graphene
radius R. This is in accordance with the numerical results49

based on the von Karman plate theory22 for circular plates. It
then follows that the small but nonzero bending stiffness
plays a vital role in maintaining the structural stability of a
graphene. Note that the von Karman plate theory22,49 could
be more accurate for analyzing a graphene,22 but this theory
will lead to nonlinear differential equations that can only be
solved numerically49 and cannot bring about an explicit for-
mula like Eq. �3�.

Now let us choose a specific approximate wrinkling dis-
placement, w=Af�	 ,��, to predict the critical value �wo�cr
and the associated initial wrinkling mode of the graphene.
Let

w = A� r

R
�4
� r

R
� − 1�3

cos n� . �4�

Note that w is perpendicular to the r-� plane and does not
include the prewrinkling deflection of the graphene. In Eq.
�4�, n is the circumferential wave number of the wrinkling
mode. Equation �4� satisfies the simply supported boundary
condition �w 
r=R=0 and ���dw /rdr�+ �d2w /dr2�� 
r=R=0
�Refs. 48, 49, and 51�� and the condition w 
r=0=0,49 but does
not directly define a freely movable boundary in the r-�
plane. Clearly, Eq. �4� gives the trend of w�r� similar to the
prediction of MD for initial and postwrinkling of the
graphene �Fig. 2�a��. The maximum w according to Eq. �4� is
at r�9 nm for a circular graphene of R=16 nm, which is

close to 9 to 11 nm given by the MD simulation. Equation
�4� thus forms a reasonable approximation for the initial
wrinkling modes of the graphene. Substituting Eq. �4� into
Eq. �2� gives the minimum value �w0�cr=1.78–2.73 nm with
n=7 as shown in Fig. 4. In the calculation Dbending=0.85, 1,
and 2 eV and Kextension=340 GPa /nm according to Refs. 10
and 15. The corresponding wrinkling mode predicted by this
2D plate model is shown in Fig. 5, which is consistent with
the MD prediction of seven to eight waves at the emergence
of wrinkling �Fig. 2�b� and 3�. This shows the validity of the
present 2D plate model for the wrinkling analysis of the
monolayer graphene.

To further identify the origin of the wrinkling we have
plotted in Fig. 6 the prewrinkling forces Nr and N� �Appen-
dix A of Ref. 50�. We can see that Nr is positive in the range
of r
0.6R and close to zero when 0.6R�r�R. Positive N�

is also found at r
0.06R. However, at 0.06R�r�R N� is
negative. These indicate that prior to wrinkling the graphene
is primarily stretched out in the radial direction but mainly
compressed in the circumferential direction due to its perim-
eter reduction when the material is pulled to the its center by
the nanoindentation. The compression increases linearly with
w0

2 �Appendix A of Ref. 50�. Specifically, the monolayer
graphene during postwrinkling deformation can withstand a
great deal of compressive stress due to its bending stiffness.

IV. CONCLUSIONS

This study concludes that wrinkling occurs in a simply
supported circular graphene under a central point load when
the indentation depth w0 reaches a critical value. Increasing
the indentation depth will further develop the wrinkling with
growing displacement and number of circumferential waves.
The 2D plate model demonstrates that such wrinkling is ini-
tiated by the circumferential compressive force with the criti-
cal value of w0 solely determined by the bending stiffness-
to-extension stiffness ratio Dbending /Kextension. From these
results it follows that bending stiffness Dbending and in-plane
stiffness Kextension of graphene are two key material proper-
ties that largely determines the resistance of graphene to the
structural instability.
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