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THE METHOD OF WEIGHTED RESIDUALS FOR
TRANSVERSELY ISOTROPIC AXISYMMETRIC PROBLEMS
AND ITS APPLICATIONS TO ENGINEERING

Zhang Liangchi and Ding Haojiang
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ABSTRACT: A method with two harmonic functions is proposed for solving transversely isotropic
axisymmetric problems by applying the theorems of Refe. [1] and [5]. A series of simple formmtas of
the boundary least square collocation method is derived. Two engineering examples show that the
present method is much more convenient than Lekhniskii's with biharmonic f_uﬁcﬁons. Some useful

conclusions are finally obtained.

EEY WORDS: the method of weighted residuale (MWR), transverse isotropy, axisymmetric
problems, harménic function.

1. INTRODUCTION
-The analyses of transversely isotropic.axisymmetric problems in engineering have been the
subject of many experts'? %L As early as the 1950s, Hu Haichang and Lekhniskii solved some
typical problems with biharmonic functions!!,

In the present paper, a methed with two harmonic functions is proposed for solving
axisymmetric problems by applying the theorems of Refs. [1] and [5]. This method is convenient
to find analytical solutions because thorough analyses of harmonic functions have been made.
Moreover, it is also very suitable for the applieations of MWR since a series of simple formulas can
be derived. The paper analyzes two engineering examples with the boundary least square

collocation method and gets very good results and advances some opinions on the point-load tests.

il. DERIVATION OF EQUATIONS
It is convenient toc use the cylindrieal coordinates (r,z) for ‘the analyses of transversely
isotropic axisymmetric elastic bodies. The general solutions of the title problem can be easily.
obtai.n?d from the theory of Ref. [2]:

v _%; _ _ 3 (=750
=A%) = AFE ¥
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where

82 [7-’ taf— 1+ /6P + of — 1)7 — 4afy? ]/(23?)
a=By, /By f=By/B, y=B./B, @

Fig.l A multiply connected region

The corresponding expressions of stresses can then be derived from equation (1). For a simply
connected region, Equ.(2) has solutions of form
2]
Qfrsz) = 21 RPulnsz) (=12 4)
e
but for a multiply connected region as shown in Fig.1, the following additional functions should be
superposed

B = § ALobsplor + Otrs], (=12 ©)

where w! and 4] are undetérmined-coefﬁcients, and {J, and ¢, are homogeneous and homogeneous
harmonic polynomials of the nth order, respectively. For the sake of convenience and definiteness,
the following notations are adopted:

¢s = ¢n(r 93)’ M - ¢l(r$sjz)’ On = Qn(r »z)’ Qlj: = Qu(r ,SJZ)
The following recurrence formulas are used
’,2
b, =z, - ;'pﬂ—b $o=1
Yu= nd’n—l +a,1, Yo=0

2
Qe = 2Q,-, _"";'“u—"b Q=0 ©
2
15,'=HQ,_1 +mn—l_mwlr nl}-__o
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: | 2. it Wy ~nla—1)Q,,
%2 =l - 1Q,,

With the help of Eqs.(6) and (7), the components of stresses and displacements can be

expressed as
oy l Unj [ iy
¥z @ 2 ufj X ﬁff
G = El j;l (60,{ '-B66 0’:_; + A‘,’, 366 0-': j ) (8)
Ty B a3 Bge G5;
Oy B O'fj Bgg afj
. Bego?? | Bos3 |

where uf;, 47, and so0 on are the functions of ¢, Y,
stresses and displacements are obtained by trun
coefficients @} and A/ are solved from the

@, and %), The approximate representations of
cating Equ.(8) and can be determined once the
linear equations of residuals

fmfmﬂmds =0
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Fig2 A magnesium cylinder
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is used throughout the calculations.
Example 1. A magnesium finite cylinder with transverse isotropy is subjected to a self-
equilibrium end stresses prescribed as
z=+th: o6z=1-27 1;=0

The elastic coefficients of the material are taken from Ref. [3]. The end problems of the circular
~ cylinders have been the focus of much research attention over many decades and have widely been

investigated!® L. Generally, the methods of eigenfunctions or Fourier series are employed. In order

to obtain results with good accuracy, a large number of terms of the corresponding series should

-usually be taken, because of the slow convergence. In 1978, Vendhan and Archer calculated

magnesium cylinders with fifty-three terms of the eigenfunction expansion®. In this papér, we

take twenty-two and twenty terms of Eq.(8) for the cylinders of h/R =005and h/R=02,

respectively. The results of &, and 6, on section z =0 are listed in Table 1.

Table 1

Stresses on the section 5 =0 of the magnesium cylinder,

/R | 00 01 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0

AR
o,] =005 0.0988 0.0978 0.0947 0.0897 00826 00735 0.0623 0.0492 0.0340 0.0169 0.0000

h{R
—020] 00666 00657 00627 00576 00505 00417 00316 00214 00135 00063  0.0000

{B/R _
a,} = 005] 0.0988 0.0957 0.0866 0.0715 0.0502 00229 —.0105 —.0500 —0055 —.1491 —.2033
iR p
=020} 00666 00636 00545 00393 0.0181 —.0092 —.0424 0810 -.1238 —.1669 —.2100
1 0
" The comparison of @, {for b / = 0.05) from Table 1 with the Vendhan’s results has been shown in 0
Fig.3. The curves show that the present results are in good agreement with Vendhan’s, but the o
" present method is more labour-saving and more forthright on the procedure of calculation. &
. . 0.
Example 2. The axisymmetric ellipsoidal point-load rock specimen, as shown in Fig.4, is a :
: 14
typical one in the point-load tests, which are used to determine the strength of rock which has .
lower strength or has severely been weathered so that normal tests become powerless. 1“
Unfortunately, up to now, either in theoretical studies or in experimental investigationis the rock 1‘4
specimen has been considered as isotropic’®, In order to simulate the properties of the materials 5
) _ : , 1
" more exactly, we adopt the model of transverse isotropy for the first time. The elastic coefficients - 23
: p : . i

are taken as: B, = 1.0 x 10%kg/cm?,v . = 0.3 and v; = 0.25; and three different values of Ey,
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Fig4 An ellipsoidal rock specimen .
for pointload test

are taken: a) E,, = 1.40 x 10°kg/cm?; b) E;, =1.45 x 10°kg/cm® and ¢) E,, = 1.50
x 10°kg /em? in order to investigate the variation of stresses of the specimen with different elastic
coefficients. The dimensions of the specimen are OA = 2.63 ¢m and OB = 2.0cm. Here we take

eighteen terms of Equ.(8) as the trial function. Tables 2 and 3 list the stresses of the above three

cases.
Table 2

Stresses (kg/cm?) on the loading axis of the ellipsoidal specimen

Eu\ 7 oz

#(cm) a8 b ¢ a b -

0.0 0.6836 0.6646 0.6457 —-3.3115 ~3.3105 —3.3104
0.2 0.6889 0.6700 0.6511 ~3.3820 —3.3308 —3.3905
0.4 0.7027 0.6835 0.6642 —35987 - —3.5968 —3.5960
0.6 0.7195 0.6993 0.6791 —3.9608 —-3.9779 ~3.9760
08 0.7326 0.7106 0.6885 —45608  —45648 —4.5616
10 0.7339 0.7084 0.6827 —5.4407 —-5.4381 —-5.4201
12 0.7181 0.6854 0.6524 —6.7411 —6.7307 ~6.7223
14 0.7000 0.6540 0.6122 —8.7597 ~8.7424 —8.7279
1.6 0.6630 0.5996 0.5353 —12.0715 —12.0430 —12.0185
18 0.5777 0.4842 0.3899 —17.8600 —17.8050 —17.7640
20 0.1534 0.0046 ~0.1458 _287373 —28.6279 ~28,5288
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Table 3

Stresses {kg/cm?) on the section z =0 of the ellipsoidal specimen

%\ - G, L) dz

. ricm a b ¢ | s b c a b ¢

0.0 06836 0.6646  0.6457 06836 0.6646 06457 —33115 —3.3105 —3.3104

02 06619 06432  0.6247 06876 06604 06514 —3.2505 —3.2492 —3.2489

04 0.5099 05822 0.5646| 0.6985  0.6826 0.6668 --3.0752 —3.0733 -—3.0723

06 05055 04807 0436|072 07007 06883 | —3.8068 —2.8043 —2.8026

08 03806 03752  0.3609 0.7275 07188 0.7104 | —24741 —~2.4713 —240691

10 02579 02453  0.2326 07350 0.7312 07267 —21068 —2.1042 —2.1021

12 ¢1078  0.0964 00850 0.7314 07302 0.7292 | —1.7306 -1.7292 —-1.7278

Ls. | —oms —o0azr —oosss|oro0 07024 0.708 —13671 13675 —13677

1.6 —00622 —0.0708 —00731 06073 06103 06136 ~1.0705 —-1.0740 —1.0771

12 00293  —0.0315 —0.0324 0.5400 05457  0.5537 —0.047¢ -09566 —0989%

20 00000  0.0000 0.0000 0.4757 04869  0.4983 —0.8671 —08893 —0.9017

IV. CONCLUSIONS
The following conclusions can be obtained from above analyses and discussions:

1. Bytheuseof Equs.() and (8), we can make the boundary least square collocation method for
solving the transversely isétropic axisymmetric problems as simple as the corresponding
isotmpic'ones. The present method is much more forthright than Lekhnitekii’s with
biharmonic fonctions. -

9.  The present method can provide approximate analytical ‘solutions. It is therefore more
convenient for determining the Jocations of the characteristic points of stresses, such as
extreme value'points,, 2600 pomts and so on. These special points are very useful for
understanding the atress distributions in the specimen.

3. Thia paper considers for the first time the point-load rock specimen as a transversely

isotropic one, thus geveral valuable results which cannot be gotten by the use of isotropic
model are obtained. Tables 2 and 3 show clearly that the variation of the elastic modulus,
En,hs great(effect on the stress components o, and 0g. The radial stress 0, increases
sigﬁﬁmﬂrvn{hthe decreasing of E,,, and the zero point of ¢, on loading axis moves
deﬁnitzly'fhesp:a!emdeed the important factors which severely affect the accuracy of point-
Joad tests!™ l. Fig&54md6 show the distributions of the radial stress ¢, on the loading axis and’
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Fig5 The radial stress on the loading axis

the circumferential stress Og on the section z =

out that the larger is the ratio of E,
becomes,
material. Therefore,

1/E,, the smaller the
if the loading axis is chosen to be perpendicular to the isotropic plane of the
in order to get reliable data, the orientation of the isotropic plane of an’

0 5 .
5 Al 11 = 140 x"10°
6 |
——=E;, = 145 x 10°
O5F B, =150 x 10° \
0.4 ] ' ) 1 I |
08 02 04 06 08 10 12 14 1.6 18 29

r

Fig.6 The circumferential stress on section z = -

0, respectively. Finaily, it should be pointed
limiting break load of a specimen

irregular specimen™! should be considered.
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