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This paper introduces a simple method Jor solving solid mechanics problems. Based on a
Physical consideration, the equilibrium equations of @ mechanics system were transferred to
corresponding dynamic ones. The static solution was then obtained as a result of damped
oscillation. The bending of a simply supported elastic beam was used to demonstrate the
Jeasibility and efficiency of the method. The Ppaper emphasizes that solid mechanics problems
can be solved effectively with a sound physical understanding.

NOMENCLATURE

damping matrix, see equations (3) to {5}

system damping factor, defined by equation (3)

vector of generalized external forces, see equations (1) and (2)

mass matrix, see equations (3) and (4)

total node number of a discrete system

maximum iteration number with respect o fictitious time, defined by equation (7)
vector of intemal forces of the discrete system, see equations (1) and (2)

vector of residual forces, defined by equation (3}

#,v,w displacement components of a continuum, see equation (2)

X vector of generalized solution defined by equation (1)

XX vectors of fictitious velocity and acceleration, respectively, defined by equation (3)
T
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increment of fictitious time

Superscripts

0 initial
n number of iteration with respect to fictitious time

Subscripts

i indices for vector or matrix elements
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L INTRODUCTION

The methods for solving solid mechanics problems in undergraduate teaching in mechanical
engineering are usually mathematical. This is well demonstrated by most textbooks. Thus, in
students’ eyes, solutions to the governing equations are mainly the application of dry
mathematical algorithms. The physical background of practical mechanics systems appears
unrelated to the methods of solution. In this way, students’ interest can hardly be stimulated.

This paper aims to introduce an alternative approach for solving the mathematical
goveming equations in solid mechanics. The approach is intended to make full use of
physical arguments. In so doing, students may not need to carry heavy mathematical equip-
ment, and may therefore enjoy the modelling of solid mechanics problems whose equations
are difficult to solve,

2. SOLUTION WITH PHYSICAL UNDERSTANDING
2,1 An intuitive example

An unconventional idea was proposed physically by Rayleigh in the nincteenth century, as
indicated by Timoshenko [1]: the static solution of a mechanics system could be viewed as
the steady-state part of a corresponding dynamic problem. This idea can be interpreted by a
simple mechanics mode] composed of a rigid ball and an elastic spring in a container with
liguid, as shown in Fig. 1. The initial equilibrium position of the ball is at O, If the ball is
* subjected to a horizontal impact induced by any disturbance, it will vibrate, Because of the
damping of the liquid, however, the oscillation will become smaller and smaller and the ball
will finally stop at its initial equilibrium position O. Clearly, the dynamic solution of this
ball-spring system is obtained when the equation of motion of the ball is solved. In the
meantime, the static solution of the system is also obtained when the oscillation stops, The
major difference in obtaining the dynamic and static solutions lies in that the detailed tran-
sient process of the system is not of interest when seeking the static solution by studying the
dynamic process. What is important is to obtain the static solution in the shortest computa-
tion time [2].

The above idea can be easily generalized and implemented for solving general mechanics
problems.

2.2 Solution strategy for a general problem in solid mechanics

Assume that with_.ixhe_,,aid of the finite difference or finite element methed, a three-
dimensional continwum in static equilibrium has been transferred into an equivalent discrete
system connected through N nodes. The discrete governing equations of this static system
- can'then be written as -

P(X%)=F n

where P is the vector of discrete internat forces in the continuum®, X2 is the vector of the
real solution of the discrete system and F is the vector of the discrete external forces applied.
If the node displacements (uy, v, w;) (i = L,..., N) are the only numbers of node freedom of
the discrete system, P, X® and F are the vectors with 3N elements, i.c.

1 For a linear system, P(Y™) becomes KX3 where K is the stiffness matrix.
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Fig. 1. The oscillation of a rigid ball.
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However, when the real solution of equation (1), X3 is replaced by an approximate solution
X, residual forces R = F — P(X) appear and cause disequilibrium of the system. Similarly 1o
the oscillation of the above ball-spring systern, now one can naturally consider that it is the
disequilibrium forces R that induce the motion of the originally static bystem. Hence, the
dynamic eguations corresponding to equation (1) must be

1
b

MX+CX=R L 3)

where M and C are mass and damping matrices and X and X are velocity and acceleration
vectors. '

As mentioned before, because the motion of the system is not of practical interest,
equation (3) can be referred to as the representation of a fictitious dynamic process. This
means that one can fictitionsly construct equation (3) in a way that simplifies the implemen-
tation of the method to the full extent. For this reason, one may consider M and C as
fictitious mass and damping, take them as diagonal matrices and further assume that C = ¢cM.
That is,
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where ¢ is a constant for all the node freedom and is called the system damping factor. In so
doing, explicit iteration formulae can be achieved when the central finite difference scheme
with respect to fictitious time is applied, that is,

k2 22770 pnp 27" i
2+7% 2+T"c ©)

xn+l - X7 4 pitlgntin2

where superscript » indicates the nth iteration step and tis the increment of fictitious time. In
the derivation of equation {6), it has assumed that the externat force vector, F, is independent
of fictitious time and that

xr-12 =(X" _Xn-—l) "
¥n =(X"+]‘,2 —xn-y2 )/T"
xn =_%_(Xn-l[2 +Xrn+112)

An assembly of equations (1) to (6) leads to a simple iterative algorithm as follows, where
Nax is the maximum preset number of iterations:

{a) specify Ny, let X0=0,n=0

(b)  compute/guess X° and c; form M

{c) calculate disequilibrium force R"

(d) ifR"=0Q, stop; otherwise continue

(e)  caleulate X**V2 ysing equation (6a)

(f)  determine X™*! by equation (6b)

{g) apply boundary conditions

(h) n=n+1;if n= Ny, stop; otherwise refurn 1o step {c)

The above algorithm includes three key factors: (i) the determination of fictitious mass
matrix M, (ii) the calculation of the damping factor ¢, and (jii) the selection of the initial

¥ 1t is possible to introduce different factors of instant critical damping for individual node freedom, see
Refs [2-4).
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vector X, The criterion of selecting M, ¢ and X¥ is that the static solution of equation (3) is
achieved in a minimum number of iteration steps. To obtain a high numerical stability, M
should be calculated using the Gerschgorin theorem of eigenvalue disks (see Refs [2--5] for
details). However, ¢ and X° can be determined with a sound physical consideration.

2.3 Determination of the damping factor ¢

From the physical point of view of vibration, the ball-spring system illustrated in Fig. 1
reaches its static equilibrium in the shortest time when the liquid in the container provides a
critical damping. For a general mechanics system represented by equation (3), an instant
critical damping factor at the nth step of iteration, ¢”, should be applied. According 1o
Rayleigh’s quotient, ¢” can be calculated by

112
mpl XN
¢ 2{(XM)TMHXJ'1 } (8)

2.4 Determination of the initial vector X°

If an iteration starts from an initial vector close to the real solution, computation time can
also be reduced. A good X can be obtained by the following straightforward consideration.
The total energy of an undamped elastic system in vibration is a constant. This indicates
that any initially guessed vector X" must correspond to an extreme state of X. Hence, if
another extreme state of X, say X, is obtained by monitoring the undamped vibration,

X" =L(x®+x®) )

is a very good initial vector for the subsequent calculation with instant critical damping.
Fig. 2 schematically demonstrates this process of initial vector determination.
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Fig. 2, Initial vector determination.
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Fig. 3. Deflection of a simply supported beam. (a) Trace of central deflection during free

vibration; (b) comparison of the central deflection with the exact solution,
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3. ILLUSTRATION

As an illustrative example, let us consider the elastic bending of a simply supported beam
subjected to a uniform pressure 4. The cross-section of the beam is square. The geometrical
and material parameters of the beam are gh/E =0.01752 and k/l = 0.052 56, where E is
Young’s modulus, k is the height and { is the length of the beam. In the numerical calcula-
tion, the beam was divided into eight finite difference segmenis, The free vibration trace of
the beam deflection is shown in Fig. 3(a). Using algorithm (7) in conjunction with the initial
vector and instant critical damping factor determined by equations (8) and (9), the static
solution can be obtained in sixty fictitious time steps (see Fig. 3(b)). It should be pointed out
that the technique discussed above can also be used to solve more complex engineering
problems with both geometrical and material nonlinearity.

4. CONCLUDING REMARKS

This paper describes an approach of solving solid mechanics problems with physical congid-
eration. It is an interesting experiment to demonstrate to students that sound physical under-
standing is impontant to improve the efficiency of a solution method. Sometimes even an
intuitive idea can create a new technique for solving mathematical equations.
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