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Abstract: The transition between the elastic and plastic states is sharp in the classical plasticity theory. To overcome this problem, many
constitutive models, such as multi-yield-surface model and two-surface model, have been developed. However, these models can not
represent the true deformation process in a material. In order to capture nonlinear hardening behavior and smooth transition from elastic
to plastic state, a general model of fuzzy plasticity is developed. On the basis of the theory of fuzzy sets and TAKAGI-SUGENO fuzzy
model, a fuzzy plastic model for monotonic and cyclic loadings in one dimension is established and it is generalized to six dimensions
and unsymmetric cycles. The proposed model uses a set of surfaces to partition the stress space with individual plastic modulus. The
plastic modulus between two adjacent surfaces is determined by a membership function. By means of a finite number of partitioning
surfaces, the fuzzy plastic model can provide with a more realistic and practical description of the materials behavior than the classical
plasticity model. The validity of the fuzzy plastic model is investigated by comparing the predicted and experimental stress-strain
responses of steels. It was found that the fuzzy plasticity has the ability to handle many practical problems that cannot be adequately
analyzed by the conventional theory of plasticity.
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plasticity produces excessively large ratchetting. In an
1 Introduction attempt to mitigate this artificial ratcheting, BARDET ['*"*]
proposed a constitutive model based on the concept of
scaled memory. GRANLUND!? and OLSSON?"
focus over many decades. For example, MROZ introduced developed a two-surface concept, usipg an elasti(.: limit
the concept of a “field of work hardening moduli” and surface and a me'mory surface, tol descrl‘t?e the.beha.wlour of
generalized the linear kinematic hardening mo dell3] strucFu.ral steel in rllon-monoFonlc 19ad1ng situation. The
which led to multi-yield-surface model ), approximated Fransm(?n from elastic to plastllc.state in subsequer[lztl]loadlng
by a multilinear response of a material. For each linear part, is described by fuzzy-set plasticity of KLISINSKI™".

a linear kinematic hardening model is used with a specific In order to capture the nonlinear hardening behavior, a

value of plastic modulus. One of the main difficulties with somewhat dlﬁer[g?gz] approach was introduced by
the multi-yield-surface model is the large number of KLISINSKI, et al™"", based on the theory of fuzzy sets,

surfaces necessary to describe material’s hardening, and which assumed that there exists an ultimate yield surface

. where the behavior of the material is entirely plastic.
each surface needs the storage of a tensor variable (usually o . ) ) .
) . Within this ultimate surface both elastic and plastic strains
six components) and a scalar variable. To overcome such

problem, further development has been trying to obtain the develop O,n t,he 'current. y,le,ld S}lrface, and .the response (,)f
. . . . the material inside the initial yield surface is purely elastic.
same specific properties by using only two surfaces, i.e.,

the yield surface and the bounding surface or limit But the elastoplastic response between the initial and the
surface”, such as bounding surface plasticity’® " ultimate surfaces is characterized by a fuzzy set. Every
subloadingsurface  elastoplasticity!'*! and  discrete point in this region is assigned with a real number () on
memor y[13,14] Instead of a constant modulus. these the interval [0,1]. If the stress point is on the ultimate
two-surface models use a plastic modulus that varies in a yield surfac.e, the membershlp function y is zero, but for
continuous manner between the two surfaces. However purely elastic behavior y become 1. Scalar (@) represents

HASHIGUCHI™! pointed out that bounding surface the degree qf Tn.embershlp that.stress o-has to be the set of
stresses exhibiting purely elastic behavior. KLISINSKI, et

* Corresponding author. E-mail: nhzcl@163.com al, used a new plastic modulus % to replace the plastic
This project is supported by National Hi-tech Research and modulus H in the conventional formulation of hardening

Development Program of China (863 Program, Grant No. . . . . .
2008AA04Z407) incremental plasticity. This new plastic modulus % is a

Constitutive modelling of plasticity has been a research
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function of the plastic modulus H and the value of the
membership function

h=HH. 7]
This function should satisfy the following conditions
e
An example of the form of this function is
h(H,y)=H+(M - H)y*, a#0. 3)

where M is a large positive number.

In the above fuzzy plasticity theory, there is only one
membership function y(6). Its key is to find the new
plastic modulus 4. The nonlinear function /4 is defined in
terms of the value of membership function y(¢). Similarly,
to determine the plastic modulus H in the traditional way,
it is difficult to determine function y(¢). As a matter of
fact, it is not a real fuzzy model.

The present paper aims to develop a general fuzzy
plastic model to describe the behavior of materials. On the
basis of the theory of fuzzy sets””! and TAKAGI-
SUGENO fuzzy model®, we first establish a fuzzy
plastic model for monotonic and cyclic loadings in one
dimension, we will then generalize it to six dimensions
and unsymmetric cycles. The new model uses a set of
surfaces to partition the stress space, with each surface
having a constant plastic modulus. The plastic modulus
between two adjacent surfaces is determined by a
membership function. By means of a finite number of
partitioning surfaces, the model can provide with a more
realistic and practical description of stress-strain curves.

2 One-Dimensional Fuzzy Plastic Model

2.1 Classical plasticity theory

First let us briefly review the classical plasticity theory.
As we know, the conventional incremental theory of
plasticity is based on the assumption that there exists a
yield surface in the stress space

f(o,%6)=0, (4)

where x is a hardening parameter. The yield surface
defines the elastic region of a material. When a stress
point is within the yield surface (i.e., f(o,x) <0), only
elastic strains take place and the increment of plastic
strain is zero. When a stress point is on the yield surface
(i.e., f(o,k)=0 ), plastic strains occur. The basic
formulation of the constitutive relations is

(1)

de =de® +deP, (5)
where de® =C°do, (6)
deP =ddm; d{=>0. @)

In above expressions, deis the elastic strain increment,
de? the plastic strain increment, C° the elastic
compliance dé a plastic multiplier,
m = 0g(c)/0c the flow direction, and g(o) the plastic
potential function.

matrix,

When f(e,x) =0, the loading / unloading criteria are

dg > 0;df =0, plastic loading
d¢ =0;df =0, neutral loading , (®)
dg =0;df <0, elastic unloading

The increments of plastic strain occur only in the loading
case, the plastic multiplier can be obtained

d¢ = % nda, 9)

where n=0f /06 is the gradient of the yield surface.
The plastic strain increment can be written in the
following form

%(nda)m; if f=0; nde2>0

de? = ., (10

0; if f<0 or f=0; nde<0

For a work hardening material, the strain increment is
normal to the loading surface and hence, g= f. This means
that the plastic potential and the yield surface are the same
and we have n= m, resulting in the associated flow rule’™
26.21 The transition between the elastic and plastic states
is sharp in this theory, i.e., there is not a transition zone
between elasticity and plasticity, which does not represent
the true deformation process in a material *”),

2.2 Fuzzy plastic model for monotonic loadings

In an attempt to improve the description of the behavior
of materials, we propose a general concept of fuzzy plastic
model based on the theory of fuzzy sets and TAKAGI-
SUGENO fuzzy model. Here, we will first define the fuzzy
plastic model in one-dimensional monotonic loadings.

As shown in Fig. 1, the initial state is strain- and
stress-free (i.e., € = 0, and 6 = 6y= 0). Opax and oy, are the
compressive and tensile yield stresses, respectively. Similar
to elastoplasticity™, the nonlinear stress-strain response is
incrementally described by splitting the incremental strain
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de into the elastic strain de° and plastic strain de”

Omax

Stress ¢

Omin

Emin 0 Emax

Strain &

(a) Stress-strain curve during compression and
tension

Fig.1.

de = de® +de® :d?o'+d_a ,

I (11)

where do is stress increment; E is elastic modulus; and H
is plastic modulus.

The plastic modulus A can be selected as the following
function:

1= (o)

; (12)

where H) is the plastic modulus in perfectly plastic state,
and y(6)(0< y <1) is a nonlinear function of the stress 6.

At the initial stress state (i.e., ¢ = 0), y =1, H—oo,
Eq.(11) predicts a purely elastic response. When the stress
reaches Ouax OF Omin, ¥ =0, H=H,, Eq. (11) predicts a
perfectly plastic response. Eq.(12) defines a gradual
transition from purely elastic (i.e., H—®) to perfectly
plastic responses (i.e., H =H,). Eq. (12) transforms the
nonlinear variation of H on the interval [Hp, ] shown in
Fig.1(b) into the nonlinear variation of y on the interval
[0,1] shown in Fig.1(c).

To characterize this nonlinear function y(¢) better, we
use TAKAGI-SUGENO fuzzy model, which can
uniformly approximate a continuous function on a closed
interval accurately'*”’.

2.2.1 Fuzzification of stress &

N fuzzy sets are used. Each fuzzy set, denoted by A;
(=1, 2, ... , N), has a continuous membership function
4; . We partition stress space [Go, Gmax] into (N-1) intervals,
as shown in Fig.2.

2.2.2  Fuzzy rules
Rule 1: IF ¢ is 4, THEN g =177 4, with the
H

0

membership value w,

(b) Plastic modulus during
compression and tension

Hy o0 0 1
Plastic modulus A Nonlinear function y
(c) Nonlinear function y during

compression and tension

Fuzzy plastic model for monotonic loadings

Rule 2: IF ¢ is 4, THEN dgP —1=72 45 with the
HO

membership value w,

Rule j: IF o is A, THEN ggr— "7 4, with the

0

membership value w;

Rule N: IF ¢ is Ay THEN gz» ='=7¥ 4, with the
H

0
membership value wy

where y;(0<y;<1)  are design parameters.

2.2.2  Defuzzification
The centroid defuzzifier is used.

1—v.

N e

zj=le( i L de)

deP = — , (13)

j=1wj

=1

2

E

=]

Ry

=

b5y

£

5o .

= [} Omax
Stress o

The stress-strain response during one-dimensional
monotonic loadings can be calculated by using Eq. (11)
and Eq. (13).

Fig. 2.  Membership function
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2.3 Fuzzy plastic model for cyclic loadings (symmetric
stress cycles)

2.3.1 Unloading

During the unloading (i.e. d6<0) from point A shown in
Fig. 3(a), y is constructed to obtain the elastic response
(i.e., H—o, and y =1) at the beginning of the unloading.
As shown in Fig.3 (b), point B' on the tensile branch has
the same value of y and H as point 4' on the compressive
branch during loading. The interval partitioning should be
conducted on the stress space [6,4, -04], as shown in Fig. 4.
We have
At point 4: 6 =04, y =1, H—x;
At point B": 6 = -64, y=yp=y4, H=Hp;
where y, is the value of y in point 4 during loading.

P
Jj=1 WiV

Vg =V4= ¥ ) (14)
Jj=1 Wi
H
HB' = 0 . (15)
-7,
Similar to monotonic loadings, we can get
-y
S i ") de)
» j=1""7J H()
deP = N . (16)
j"i

2.3.2 Reloading

During the reloading (i.e. d6>0) from point B shown in
Fig. 3(a), y is constructed to obtain the elastic response
(i.e., H—o, and y =1) at the beginning of the reloading
(Fig. 3(c)). As shown in Fig. 3(c), point A" on the
compressive branch has the same value of y and H as
point B" on the tensile branch during unloading. The

Omax

Stress ¢
Q

Go

~Omax

Emin 0 Emax
Strain €
(a) Stress-strain curve during compression,
tension, and cyclic loading

interval partitioning should be conducted on the stress
space [0, 04]. We have:

At point B: 6 = 03, y =1, H—x;

Atpoint A": 6 =04, y =y =y

where yp is the value of y in point B during unloading.

N ’ ’
2T
=1 J'J
Yu=rw = (17)
z Jj=1 Wy
Similar to monotonic loadings, we can get
1—y"
SV w1 dg)
» j=1""7J H()
deP = N, . (18)
j"i

3 Description of Models with Purely Elastic
Region

The purely elastic region may exist from the beginning
of the development of plasticity. It can be related to the
elastic region enclosed by the first yield surface in the
“mechanical ~ sublayer = model”  advocated by
BESSELING"".. In the bounding surface theory, it is
called the elastic nucleus. The value of the nonlinear
function y for points from the purely elastic region is
equal to one. The plastic modulus H is infinite.

3.1 Monotonic loadings

As shown in Fig. 5 (a) and (b), at the stress space
[o0, o] o1 [00, —0%], y =1, H—>, Eq. (11) predicts a purely
elastic response. At the stresses oyx OF O, ¥ =0, H=H,,
Eq. (11) predicts a perfectly plastic response. The interval
partitioning should be conducted on the stress space [og,
Omax]- An equation similar to Eq. (13) can be obtained.

Nonlinear function y

Nonlinear function y

(c) Nonlinear function y
during unloading

(c) Nonlinear function y
during reloading
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Y

Membership function u;'

Stress o

Fig.3. Fuzzy plastic model for cyclic loadings

Fig. 4. Membership Function

3.2 Cyclic Loadings

3.2.1 Unloading

During the unloading from point 4 shown in Fig. 5(a), y
should represent the elastic response of a material (i.e.,
H—oo, and y =1) at the stress space [64, Og1]. As shown in
Fig. 5 (c), point B' on the tensile curve has the same value
of y and H as that at point 4’ on the compressive curve
during loading (i.e., 6 =—04, y = y,4). To fuzzify stress ¢ on
the interval [og|, —04]. An equation similar to Eq. (16) can
be obtained.

3.2.2 Reloading

During the reloading from point B shown in Fig. 5(a), y
should represent the elastic response of a material (i.e.,
H—oo, and y =1) at the stress space [o3, 0g]. As shown in
Fig. 5(d), point 4" on the compressive curve has the same
value of y and H as that at point B" on the tensile curve
during unloading. To fuzzify stress ¢ on the interval
[6£2, 04]. An equation similar to Eq. (18) can be obtained.

4. Six-Dimensional Fuzzy Plastic Model

The fuzzy plastic model for one-dimensional loading

established as above can be extended to six dimensions.

As in the conventional elastoplasticity™, the
incremental strain is the sum of the elastic strain
increment and the plastic strain increment

de =de® +de? (19)

where de®is the elastic strain increment, deP is the
plastic strain increment.
The flow rule is assumed to be associative

1
de® = —(ndo)n 20
&' = (ndojn (20)

where n is the unit tensor collinear to the flow and yield
directions (n:n=1), the plastic modulus H can be selected
as the following function

HO
H="""2" 21
1-7y(o) @b

where H is the plastic modulus in perfectly plastic state,
and y(e) (0< y <1) is a nonlinear function of stress .

Omax

Stress ¢

~Omax

Emin 0 Emax ()

Strain &

(a) Stress-strain curve during
compression, tension, and cyclic loading

Fig. 5.

Nonlinear function y

(b) Nonlinear function y during (c¢) Nonlinear function y
compression and tension

Nonlinear function y Nonlinear function y

(d) Nonlinear function y

during unloading during reloading

Fuzzy plastic model with purely elastic region
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Each one-dimensional partition point is generalized
into a yield surface. Each partitioning surface has a
constant plastic modulus and a constant value of the
nonlinear function y. That is, on surface i, y takes a
constant value y; and H takes a constant value Hy/(1— y,).
For monotonic loadings, the largest partitioning surface
(i = N) is the ultimate yield surface, whereas the smallest
one (i = 1) is reduced to the initial stress state.

4.1 Fuzzification of stress o
N fuzzy sets are used. Each fuzzy set, denoted by

A(=1,2,---,N), has a continuous membership function
u; . We use N partitioning surfaces to divide the stress
space. At the initial stress state (i.e., i = 1), y =1, H—oo,
Eq. (19) predicts a purely elastic response. At the largest
surface (i.e., i = N), y =0, H=H,, Eq. (19) predicts a
perfectly plastic response. The plastic modulus H and
function y between two adjacent partitioning surfaces are

determined by a membership function.

4.2 Fuzzy rules

Rule 1: IF o is 4, THEN dg? :I_Tyl(ndo')n with the

membership value wy.

Rule 2: IF ¢ is A, THEN dg” :%(nda)n with the

membership value w,,

-y,

Rule j: IF ¢ is A; THEN deP = (nde)n with the

membership value w;

Rule N: IF ¢ is Ay THEN dg” :%(nda)n with the

membership value wy,

where y;(0< y;<1) are design parameters.

4.3 Defuzzification
The centroid defuzzifier is used

Omax

Stress ¢

Omin

Emin 0 Emax

Strain &

(a) Stress-strain curve during compression,
tension, and cyclic loading

Zj-v:l w; [%(ndo')n] |

(22)
zj\’:l W
S Fuzzy Plastic Model for Unsymmetric
Cyclic Loadings

As previously stated, the plastic modulus H and
function y should be calculated on each loading reversal.
This is easy for symmetric stress cycles. However, it may
be difficult with unsymmetric stress cycles. We propose
the following fuzzy plastic model to solve this problem by
means of enlarging the partitioning interval.

5.1. Unloading

During the unloading from point 4 shown in Fig. 6(a), y
should represent the elastic response (i.e., H—o0, and y =1)
at the beginning of the unloading (i.e., ¢ = o). The
partitioning stress space is enlarged to the interval [o,,
Omin]- At the stress point o, we have y =0, H=H,, and
this corresponds to the perfectly plastic response. It is
very useful from the numerical point of view to transfer
the stress ¢ = o, on the interval [o4, Oyn] Into a
dimensionless A on the interval [0, 1] by

Ox =0y

A= (23)

Omin —0 4

When o, = 64, we have 1 =0, y =1, H—o0. When 6, = Gy,
we have 1 =1, y =0, H=H,. As shown in Fig. 7.

5.2 Reloading

During the reloading from point B shown in Fig. 6(a), y
should represent the elastic response (i.e., H—o0, and y =1)
at the beginning of the reloading (i.e., ¢ = o). The
partitioning stress space is enlarged to the interval [og,
Omax]- At the stress point oy, We have y =0, H=H,, and
this corresponds to the perfectly plastic response. In the
same way, we transfer stress ¢ = o, on the interval [o,
Omax] INto a dimensionless 4 on the interval [0, 1] by

Nonlinear function y Nonlinear function y

(c) Nonlinear function y

(b) Nonlinear function y
during reloading

during unloading
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o] e

When o, = o, we have 4 =0, y =1, H—o0. When 6, = Gy,
we have 1 =1, y =0, H=H,. So we can have the same fuzzy

interval partitioning, as shown in Fig. 7.

Fig. 6. Fuzzy plastic model unsymmetric cyclic loadings

O,—0O
A=—2 "2 (24)
Omax — OB
Sy
g1
E
=]
Ry
=
5}
£
EO >
= 0 . .
Dimensionless 4 1
Fig. 7. Membership function

Similar to Monotonic Loadings, we can get

-y
N J
Zj=le( H

deP = 0

N
Jj=1 Wi

do)

25)

A similar approach can be used to model monotonic
loadings and cyclic loadings with symmetric stress cycles.
6 Comparison with Multi-Yield-Surface
Plasticity

Multi-yield-surface plasticity for cyclic loading was
originally proposed by IWAN'® and MROZ!!. In the case
of tension-compression, the model uses the approximation

Fig. 8. Multi-yield-surface plasticity by Mroz!"

of the stress-strain curve by linear segments with different
hardening moduli. As shown in Fig. 8, in the stress space
the multiaxial generalization is obtained by using a series
of hypersurfaces fy, f1, -, fu, Where f is the initial yield
surface and fi, f>, -+, f,, are separate regions of constant
hardening moduli’”. The multi-yield-surface model
provides a piecewise linear approximation of stress-stain
curves, with an abrupt change in slope. The higher the
number m of yield surfaces, the smoother the piecewise
linear stress-strain curve of the multi-yield-surface model
becomes, and the more accurate the simulation of the actual
measured response could become!'”. When m—oo, the
plastic modulus of the multi-yield-surface model converges
toward a smooth distribution. This continuous distribution
of H would provide a very accurate response of the material,
but this would be impractical. In the fuzzy plastic model
however, it can be approximated by a finite number of
fuzzy partitioning surfaces. The passage from one model to
another has been smoothened using fuzziness to prevent
sudden changes in the model. Therefore the fuzzy plastic
model can provide with a more realistic and practical
description of stress-strain curves.

7 Comparison of Theoretical Prediction with
Experiment

The capability of the fuzzy plastic models is investigated
by comparing the predicted and experimental stress-strain
responses of steels (tests done by OLSSONP” and
GOZZI1”®). The parameters of the fuzzy plastic model are
calibrated from the experimental results. The least square
identification method is used to search the optimum
parameters of the fuzzy plastic model. Here, we use 6
membership functions to divide the stress space. The
performances of the fuzzy plastic model and a two-surface
model by GRANLUND" and OLSSONP" are also
compared. Fig. 9 shows the comparison between the

800

700

600
500

400

Stress ¢ / MPa

300

experiment
200

fuzzy plastic model

100 two-surface model

Strain & / %

Fig. 9. Predicted stress-strain relation and a uniaxial test of the
stainless steel 1.4318 C850 (Experimental data after
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predicted and the experimental stress-strain responses for a
stainless steel 1.4318 C850 in uniaxial test (experiment
after GOZZI*®). Fig. 10 shows the membership functions
before and after training corresponding to the fuzzy plastic
model of the stainless steel 1.4318 C850 during uniaxial
loading. Fig. 11 shows the comparison between the
predicted and the experimental stress-strain responses for a
structural steel Weldox 1100 in uniaxial test (experiment
after GOZZI®®). As can be seen the overall agreement
between the experimental results and the predictions by the
fuzzy plastic model is very good. The predictions by the

two-surface model®” ** are acceptable, but are of less
accuracy.
.8 injfnf] InimZ 7 indmf3 ° inTmfd inTmfa " inTnf6
i
808 -
é 0.6 1
S 04 \
8 0.2 1
ED' .
a2 g ]
o I intm2 7 inimf3 inmfd inmf5 "intinfe
=
E 0.8
§ 06
g
s 04
Q
202
g
a 0
1 1 | 1 1 1
0 100 200 300 400 500 600

Stress 6 / MPa

(b) Membership functions after training

Fig. 10. Membership functions for the fuzzy plastic model of the
stainless steel 1.4318 C850 during uniaxial loading

1800 -------- Pttt PTTTTTTT e
1000 e e
T T —
< 1200 F------ RTEEEES bemooees
ey : : ' ' ' ' ' '
= : ; ; ; ; ; ; ;
e A T
2 ; ; ; ; ; : : :
L R S e e
2 : : : : : : : :
600 : : :
experiment :
400 f-- - P P fur :

: : : zzy plastic model

200 befoemm b T T two-surface model
0 i i i i i i i i
0 0.5 1 15 2 25 3 3.5 4

Strain & / %

Fig. 11. Predicted stress-strain relation and a uniaxial test of

the structural steel Weldox 1100
(Experimental data after GOZZI[26])

Fig. 12 shows the comparison between the predicted

and the experimental effective stress—effective plastic
strain curves for a stainless steel 1.4318 C850 in biaxial
test (experiment after GOZZI®*). Fig.13 shows the
comparison of a structural steel Weldox 1100 in biaxial
test (experiment after GOZZI®®). The biaxial tests were
carried out by OLSSON?" and GOZZI®® according to
the following loading paths: each specimen was initially
loaded in the same direction in the principal stress plane,
unloaded and subsequently loaded in the initial loading
direction plus 180°. As can be seen the fuzzy plastic
model can depict the response from the tests precisely, but
the predictions by the two-surface model ** **! are not.
The results show clearly the capabilities of the fuzzy
plastic model.

] I R T Ty T
¥00
600
500

400

Stress o,/ MPa

e R N is

experiment

S NN B A
: : fuzzy plastic model
100 _ , ------- two-surface model
0 | | | i i i i i i i

0 0.5 1 1.5 2 24 3 3h 4 4.4 )
Strain ¢, / %

Fig.12. Predicted stress-strain relation and a uniaxial test of the
stainless steel 1.4318 C850 (Experimental data after GOZZI®)
1600 p----mm e enmmmmee e

1400
1200
1000 ,I

800

Stress 6. / MPa

600

experiment
400

fuzzy plastic model

sopl two-surface model

Strain ¢, / %

Predicted stress-strain relation and a uniaxial test of the
structural steel Weldox 1100
(Experimental data after GOZZI**)

Fig.13.

8 Conclusions

(1) On the basis of the theory of fuzzy sets and
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TAKAGI-SUGENO fuzzy model, a general fuzzy plastic
model is developed. The proposed model uses a set of
surfaces to partition the stress space, with each surface
having a constant plastic modulus. The plastic modulus
between two adjacent surfaces is determined by a
membership function.

(2) The fuzzy plastic model can provide with a more
realistic and practical description of the materials behavior
than the classical plasticity model.

(3) The comparison between the predicted and the
experimental responses of steels is
implemented. The results verify the capability of the fuzzy
plastic model to simulate the stress-strain responses of
materials during both monotonic and cyclic loadings.

(4) The fuzzy plasticity has the ability to handle many
practical problems that cannot be adequately analyzed by
the conventional theory of plasticity.

stress-strain
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