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Abstract-This paper addresses the development of the modified adaptive dynamic relaxation (maDR) 
method. Through a critical review of the merits and disadvantages of previous studies, the primary 
physical approaches for improving the efficiency of the method are discussed. Emphases are placed on 
the selection of initial vectors and the calculation of fictitious damping factors. A variety of engineering 
problems, linear and non-linear as well as isotropic and anisotropic problems, are chosen to demonstrate 
the applicability and efficiency of the modified method. It is concluded that selection of initial vectors is 
only suitable for one type of engineering problems. However, a proper evaluation of fictitious damping 
and its combination with initial vector selection form a more general way to improve the efficiency of the 
maDR method. 

NOTATION 

damping matrix, see eqns (3), (5) and (6) 
system damping factor, defined by eqn (6) 
vector of generalized external forces of the discrete 
system, see eqns (1) and (2) 
stiffness matrix defined by eqn (9) 
diagonal stiffness matrix defined by eqn (I 3) 
mass matrix, see eqns (3) and (5) 
total node number of a discrete system 
maximum iteration number with respect to ficti- 
tious time, defined by eqn (8) 
vector of internal forces of the discrete system, see 
eqns (1) and (2) 
vector of residual forces, defined by eqns (3) and (4) 
displacement components of a continuum, see 
equation (2) 
vector of generalized solution defined by eqn (1) 
vectors of fictitious velocity and acceleration, 
respectively, defined by eqn (3) 
critical node damping factor, defined by eqn (21) 
increment of fictitious time 

Superscripts 

L indication of three perpendicular directions coinci- 
dent with displacement directions u, v, w, respectively 

n number of iteration with respect to fictitious time 

Subscripts 

i,i indices for vector or matrix elements 

1. DYNAMIC RELAXATION METHOD: A BRIEF OVERVIEW 

Seeking efficient and stable numerical methods is an 
important part in solving complex engineering prob- 
lems by means of computational mechanics. In the 
application of finite difference and finite element 
methods, the basic problems in dealing with strong 
non-linearities like those associated with large plastic 
deformation are the rate of convergence and the 

stability of numerical methods for solving the resul- 
tant large-scale discrete equations. However, most 
commonly used methods, like the Newton-type 
methods, cannot meet all the needs in engineering 
analysis. 

An unconventional idea was proposed physically 
by Rayleigh (in [l]) in the nineteenth century: the 
static solution of a mechanics system could be viewed 
as the steady-state part of a corresponding dynamic 
problem. The successful application of this idea was 
first achieved in the 1960s through a set of linear 
elastic structural problems by Otter [2] and Day [3], 
and was named the dynamic relaxation (DR) method. 
Through the efforts of numerous researchers in the 
last two decades [4-311, the DR method has shown its 
broad applicability in solving various problems that 
conventional methods cannot. 

1.1. Overall characteristics of the method 

There are two ways to understand the DR method. 
Physically, as Rayleigh’s original idea suggested, the 
transient process of the corresponding dynamic sys- 
tem of a static problem is not of special interest. The 
importance is to obtain the static solution in the 
shortest computation time and to guarantee that 
iterations are seeking the true solution robustly. 
Mathematically, the DR method can also be gener- 
ated from the second-order Richardson method. Its 
convergence acceleration could then be investigated 
in a pure mathematical way [27,28]. Although the 
family of the DR algorithms has both implicit and 
explicit formulations, the latter has received much 
attention in the application of computational solid 
mechanics. 
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Specifically, the characteristics of the explicit DR 
method are represented by its distinctive features as 
follows: 

(a) 

(b) 

It is incredibly reliable and stable in seeking 
equilibrium solutions even for extremely strong 
non-linear problems that cannot be solved in any 
other way [21-27,311. Moreover, the method 
needs no special techniques in studying bifur- 
cation problems and it can incorporate easily 
with the dynamic criterion for stability (that is 
the only correct stability criterion for non-conser- 
vative problems [25]) which is otherwise very 
difficult to apply with other methods. The DR 
method therefore provides great potential for 
deformation and stress analyses as well as solving 
the buckling and micro-buckling problems of 
various components with different material 
characteristics; and 
It has a fixed simple algorithm such that, like any 
other commonly used methods, a standard com- 
puter solver can be programmed. Furthermore, 
because of its explicit formulation, only small 
data storage space is required. The method there- 
fore offers broad flexibility in using different 
types of computers, large or micro-computers, 
which is of particular importance to most indus- 
trial researchers. 

1.2 Usual algorithm of DR method with explicit 
formulation and the existing problems 

1.2.1. Usual algorithm. Assume that with the aid 
of finite difference or finite element method, a three- 
dimensional continuum subjected to a set of external 
forces has been transferred into an equivalent discrete 
system connected through N nodes. The discrete 
governing equations of this static system can then be 
written as 

P(X*) = F, (1) 

ml, 0 . 0 

0 . 0 

M= I m,, 

. . . . . . . 

0 0 ... mNN 1 
rrnz 0 0 1 

where P is the vector of discrete internal forces, X* 
the vector of real solution of the discrete system and 
F is the vector of discrete external forces. If the node 
displacements (a,, u,, wi) (i = 1, . , N) are the only 
numbers of node freedom of the discrete system, P, 
X* and F are the vectors with 3N elements, i.e. 

x*= {x;l,. . .,xp,. ..,x$}’ 

F={f ,,..., f ,,..., f,}’ 

XP = (4, v,, w,}, 

f,= {fYJY7f:}. (2) 

When the real solution of (1), X*, is replaced by an 
approximate solution X, residual forces R = F - P(X) 
appear and in turn cause disequilibrium of the sys- 
tem. Hence, the corresponding dynamic equations are 
given by 

Mii+Ck=RR, (3) 

where M and C are mass and damping matrices and 
X and X are velocity and acceleration vectors. 
Equation (3) states that the movement of the orig- 
inally static system is induced by 

R={r ,,..., r ,,..., rN}‘, ri={r;,r;,r;}, (4) 

the disequilibrium forces. Clearly, as the real move- 
ment is not of interest, eqn (3) could be referred to 
as a fictitious dynamic process. This enables us to 
construct (3) in such a way that M and C are diagonal 
matrices, i.e. 

, c= 

I 

and that C = CM, i.e. 

: 

cmrl 0 0 

0 
c= 

cmz2 ... 0 
. . . . 

0 0 ‘.. cmNN 

(5) 

(6) 
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which simplify the investigation of the method to the way is to enlarge the increment of fictitious time. 
full extent. Explicit iteration formulae are achieved However, it has been shown that the increase of T” in 
when the central finite difference scheme with respect algorithm (8) is limited by the stability condition of 
to fictitious time is applied, that is iteration (see, e.g. [5]). Consequently, according to the 

Gerschgorin theory [33], inequality (IO) must be sat- 

*+I/2 
2-r? * 

- 

2 + T”C 
y- 112 + .$& M-~RH isfied to guarantee the iteration stability. 

x”+l=y+7n+I*+I/Z, 
1.2.3. On the calculation of damping factor c. 

(7) Proper selection of fictitious factor c can improve the 
convergence rate of the DR method. Five main 

where superscript n indicates the n th iteration step approaches have been proposed in the published 
and 7 is the increment of fictitious time. An assembly literature: 
of eqns (l)-(7) leads to the usual DR algorithm as 
follows, where N,,,,, is the maximum preset iteration (a) calculate the damping factor by c = 2w,, where 

number: 

(a) specify N,,; let X = 0, n = 0 

(b) 

g 

iz 
63) 
04 

compute/guess X0, c; form M 
calculate disequilibrium force R (b) 
if R” x 0, stop; otherwise continue 
calculate X” + I/* by eqn (7a) 
determine X”+ ’ by eqn (7b) 
apply boundary conditions 
n=n+l;ifn=N,,, stop; otherwise return to 
step (c). (8) 

w. is the lowest c&far frequency of the mech- 
anics system under free vibration and is evaluated 
through the relation between W, and the maxi- 
mum kinetic energy of the system [4,9]; 
take mf = akf;; if 

The above algorithm shows that there are three key 
factors which influence significantly the efficiency and 
stability of the method: (i) the determination of (c) 

fictitious mass matrix M, (ii) the calculation of damp- 
ing factor c and (iii) the selection of initial vector X0. 
A proper criterion for evaluating a good DR algor- 
ithm is that the static solution of (3) is achieved in a 
minimum number of iteration steps with high numeri- 
cal stability. As a result, in-depth investigations into 
these three factors become critical. 

1.2.2. On the evaluation of mass matrix M. There 
are four methods which have been used in evaluating 
the 

;; 

(c) 

(d) 

element values of the fictitious mass matrix M 

take M as a unit matrix [32], i.e. M = I; 
select different values of M: [L = u, v, w; see eqns 

(d) 

(2)-(s)] in different direction L through the analy- 
sis of individual problems [9]; 
assume that the value of rnk is proportional to the 
corresponding diagonal stiffness matrix of the 
system, ki, i.e. take mf;=crkf;, where CI is a 
proportional constant [13, 181; the system stiff- 
ness matrix is given by 

(e) 

K=ap 
ax (9) 

(11) 

approaches a constant value during iteration, 
take c = 2w,, where wI is the lowest circular 
frequency corresponding to the constant 1 (see 
[18] for details); 
calculate the lowest circular frequency with the 
aid of Rayleigh quotient for linear problems, and 
then take the damping factor at the n th step of 
iteration as [5] 

(12) 

where K” is a diagonal matrix with elements 

Kn=PfO(“)-P:cw, 
,I 7n.p- 112) 

, 
(13) 

make use of the principle of Rayleigh quotient 
and assume that the instant critical damping 
factor of a non-linear system at the n th step of 
iteration can be expressed as [19] 

(14) 

take a guessed value of c and keep it unchanged 
thereafter throughout the whole process (e.g. 

V7, 341). 

From the physical point of view of vibration, a 
take [5, 191 system reaches its static equilibrium in the shortest 

time when a critical damping is applied. Method (e) 

mf; 2 ST’), t lk$l. (10) 
above is clearly poor because it uses a trial and error 

j= I methodology. Method (a) is not realistic and for 
non-linear problems since the kinetic energy of a 

Unfortunately, only (d) is a mathematically more non-linear system is usually a function with multi- 
reasonable method. In fact, to reduce the iteration extrema. Determination of its maximum value is 
time for obtaining the steady-state solution, a direct therefore very difficult. There are also several 



question marks in using method (b), on the other 
hand. Firstly, it needs a guessed value of c before 1 
reaches a constant value. This wastes much compu- 
tation time. Secondly, the method requires to store 
three vectors X’- ‘, x” and X”+ ’ during iteration 
which occupy extra memory space. Thirdly, it ignores 
the fact that only instant critical damping is meaning- 
ful for a non-linear system. This method is therefore 
actually a two-stage damping method which guesses 
the first c for obtaining o1 and then keeps c = 2w, 
unchanged until the static solution is reached. Hence, 
it must need much iteration time. Methods (c) and (d) 
are based on the same idea of Rayleigh quotient to 
evaluate instant critical damping of the system and 
therefore are more reasonable. However, if we com- 
pare the difference of data storage and computation 
requirements in the calculation of c”, (d) is much 
better, simply because (c) needs extra storage of 
Pw-') and $?iiz and extra computation to form 
matrix @. Furthermore, practical application also 
shows that (d) is more efficient and stable than 
(c) [ 19,23-261. 

1.24. On the selection of initial uector x0. If an 
iteration starts from an initial vector closer to the 
real solution, computation time will remarkably be 
reduced. 

Alwar et al. [I61 suggested that the decaying expo- 
nential envelope of the damped oscihations could be 
used to determine approximately the static solution 
of a beam. Although they thought that this method 
could offer solutions in one step (without iteration), 
it has to be referred to as an alternative for calculat- 
ing initial vector X0 because of its unacceptable 
accuracy. As shown in Fig. 1, Alwar et al. calculated 

4 

'd 

\ 

t- 

Fig. 1. A damped oscillation trace of a beam 1161. 

the approximate deflection of a beam, S, by 

6 =i(P+6=) (15) 

with an arbitrary value of damping factor c, where 6” 
was evaluated by 

&D = Ci e-WV (16) 

which is the rough approximation of the general 
expression of the decaying exponential envelope of 
the damped oscillations 

(17) 

where Ci and ffi are the system constants [16]. The 
method seems to be quite neat, but unfort~ately it 
is not practical, because the oscillation trace used was 
a very special case. Most real structures vibrate in 
more complex ways, as illustrated in Fig. 2. 

Another method for determining X0 was proposed 
by Zhang and Yu f19J. Before the calculation with 
critical damping factor, they monitored the first 
minimum and maximum points, _xiL’ and x,~” 
(L = u,v, w; i = 1,. . . , N), in the undamped oscil- 
lation. Then the elements of X0 were calculated by 

This method is generally simple and can be easily 
applied. However, it also has two shortcomings. It 
needs to get two extreme points for each node 
freedom ~4, but as we can see later, xt” is not 
necessary. Secondly, for general non-linear problems, 
the oscillation traces have complex profiles (e.g. see 
Fig. 2a), the efficiency of this method in solving these 
problems is then not remarkable. 

It is the purpose of this paper to address further the 
development of the dynamic relaxation method from 
the physical point of view. According to the above 
discussions on the merits and disadvantages of pre- 
vious studies, present emphases are placed on the 
selection of initial vectors and the calculation of 
fictitious damping factors. A variety of engineering 
problems, linear and non-linear, and isotropic and 
anisotropic problems, are chosen to demonstrate the 
applicability and efficiency of the modified methods. 
The effects of these factors in the application of the 
DR method to different engineering problems are 
successfully clarified. The paper finally points out 
that a proper calculation of fictitious damping com- 
bined with initial vector selection forms a general way 
to improve the efficiency of the maDR method. 

2. FURTHER DEVELOPMENT OF THE maDR METHOD 

A recent development of the DR method was made 
by Zhang and Yu [19]. They introduced the methods 
of calculating X0 by eqn (18) and c” by eqn (14), and 
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Fig. 2. The free vibration traces: (a) a circular plate with variable thickness, (b) a circular plate subjected 
to large deflection, (c) a simply supported beam, and (d) an anisotropic rectangular plate. 

for the first time, combined these two factors together 
in one algorithm. An extra-convergence criterion, the 
kinetic energy criterion was also applied. This con- 
structed a modified adaptive dynamic relaxation al- 
gorithm which have been shown to be more efficient 
than the others. However, the following improvement 
base on the maDR will provide far more powerful 
algorithms and help us to understand further the 
detailed effects of these factors. 

2.1. Improvement of the initial vector determination 

The total energy of an undamped system in vi- 
bration after the initial disturbance is a constant. This 
indicates that the initially guessed vector !&, must be 
an extreme state. Hence, the calculation of X** in the 
maDR method is unnecessary and X0 can more 
conveniently be determined by 

x0 = f (X0 + x*) (19) 

which saves half of the computation time compared 
with the application of (18). 

In addition, an iteration scheme can provide much 
better X0 for problems with smooth oscillation traces, 
see Fig. 2(c). After the first calculation by (19), assign 
8’ = X0 and repeat the calculation again by (19) to 
obtain a new X0. Usually, two to three iterations 

10 

will provide an accurate enough initial vector X0. 
Figure 3 presents schematically the convergence 
process. 

2.2. Application of critical node damping factor 

In all the DR algorithms discussed above, the 
whole discrete system has a common damping factor 
c such that eqn (7) holds. Although the maDR 
method evaluates instant C” at each iteration step, it 
is not good enough. For a general non-linear system 
it is difficult to imagine that all nodes approach to 
their static equilibrium positions simultaneously 
when a unique damping is applied. This suggests that 

Fig. 3. A schematic diagram for the iteration of X0. 
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Type of method Type of method 

Type of method 

Fig. 4. A comparison of the efficiency between the maDR, XODR, DODR and DXDR methods; (a) the 
circular plate with variable thickness, (b) the circular plate subjected to large deflection, (c) the simply 

supported beam, and (d) the anisotropic rectangular plate. 

different c values for different nodes should be intro- 
duced. We therefore define node damping factors & 
which satisfy 

c,,=[,m,,, i=l,..., N (20) 

to replace equation (6).t Accordingly, by applying 
Rayleigh’s principle to each node we obtain the 
instant critical damping factor for node i at the nth 
iteration as 

(21) 

The explicit formulations similar to (7) can therefore 
be. derived as 

g+’ =X~+t”+I~;+l/2, i= l,.. . , N. (22) 

t Different critical damping factor could also be intro- 
duced to different freedom on the same node if necessary. 
In this circumstance, ii in eon (20) should be replaced by a 
diagonal matrix of rank three 

i=l,.... N. 

Combining the maDR algorithm [19] and the 
above improvements, we can propose a new DR 
algorithm as follows, where eR and e, are small 
positive constants specified by the user to define the 
convergence for disequilibrium forces and kinetic 
energy, respectively 

(i) specify N,,,,, , eR, e,; let X = 0, n = 0, 
(2) let cp = 0 (i = 1, . , N); apply boundary con- 

ditions 
(5) determine X0 by eqn (19); iterate X0 if necessary 
(4) form M 

“‘4 20 40 66 80 100 120 140 
flctluous the step 

i0 

Fig. 5. The efficiency of the XODR method for the simply 
supported beam. 
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(5) 
(6) 
(7) 
(8) 

(9) 

(1’0) 
(1’1) 
((2) 

calculate disequilibrium force R” 
if ]rF] < eR, stop; otherwise continue 
calculate [: by eqn (21) 
obtain Jl(n + ‘I* by eqn (22a) 

W N 
if 1 1 (i? +I/*)* < ek, stop; otherwise con- 

L=)ri=l 

tinue 
calculate x” + ’ by eqn (22b) 
apply boundary conditions 
n=n+l;ifn=N,,,, stop; otherwise return to 
step (4). (23) 

There are two alternatives in the algorithm (23), 
omission of steps (2) and (3) or of step (7). For the 
convenience of further discussion, we call the former 
DODR method as it takes into account damping 
factor only, and the latter XODR method because it 
is concerned with X0 only. The complete algorithm 
of (23) is naturally called DXDR method for its 
involvement with both damping and initial vector 
improvements. 

3. ILLUSTRATION AND DISCUSSION 

To illustrate the advantages of the improved algor- 
ithms and demonstrate the effects from different 
factors, a variety of problems, linear and non-linear 
as well as isotropic and anisotropic, are taken as 
computation examples. For the sake of succinctness, 
only typical results are presented. 

According to their dynamic behaviour in the sense 
of dynamic relaxation (i.e. according to their ficti- 
tious dynamic behaviour when the DR method is 
concerned), engineering problems can be roughly 
divided into two types. Type (i) includes those prob- 
lems with regularly periodic dynamic traces subjected 
to free oscillation, like those of a beam and rectangu- 
lar isotropic and anisotropic plates shown in Figs 
2(c, d). Type (ii) consists of the other problems with 
very irregular oscillation traces in undamped vi- 
bration, such as a circular plate in large deflection 
and a circular plate with variable thickness shown in 
Figs 2(a, b). (Note that all the plates and beams are 
simply supported and loaded uniformly with an 
intensity q.) The efficiency of maDR, DODR, XODR 
and DXDR are compared in Fig. 4. It is clear that the 
new improvements on the selection of the initial 
vector X0 and the introduction of instant node critical 
damping [, are very successful. Overall, all the new 
methods are more efficient than the original maDR 
method. 

It should be pointed out, however, that DODR, 
XODR and DXDR have different capabilities in 
solving different types of problems. XODR is very 
efficient for the problems of type (i) because regularly 
distributed smooth oscillation traces are ideal for the 
X0 iteration as shown in Fig. 5. DODR is generally 
suitable to both the problems of types (i) and (ii) but 
is less efficient than DXDR for the former. DXDR 
method is better than XODR and DODR for type (i) 

problems but worse than DODR for type (ii) prob- 
lems simply because of the inefficiency of XODR in 
solving the problems of this type. 

In summary, however, the DXDR method, i.e. the 
complete algorithm (23) may be recommended for 
solving all types of problems. 

4. CONCLUSIONS 

Through a critical review of previous studies on the 
explicit DR methods, new approaches to improve the 
efficiency of the algorithms of the DR family have 
been discussed. New algorithms called XODR, 
DODR and DXDR have also been proposed and 
tested for computational efficiency for a range of 
problems. It is shown that the DXDR method is a 
more general algorithm for all engineering problems. 
In particular, based on previous experience of using 
the maDR method to plasticity and bifurcation 
[22-261, the present new methods are most suitable 
for complex engineering applications such as elas- 
tic-plastic deformation studies and residual stress 
analysis. 
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