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Abstract 

This paper proposes a simple algorithm for solving the contact problems in relation to sheet stamping. The efficiency and 
reliability of the algorithm are demonstrated by an investigation of the stamping of elastic-plastic circular plates into a conical 
die with a hemispherical rigid punch. The analysis shows that the contact stress varies greatly with the punch displacement and 
deviates from the uniform distribution used for approximate analyses. It is found that the central gap between the punch and the 
plate surfaces does not disappear before coining. Using the proposed algorithm, tile applicable range of the small deflection theory 
of plate bending has been examined, revealing that the applicable range of this theoD' is much smaller than is usually thought. 
© 1997 Elsevier Science S.A. 
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I. Introduction 

Stamping sheet metals into dies is one of the most 
commonly used manufacturing processes in produc- 
tion engineering. However, to design the forming 
tools properly, the deformation mechanisms of a 
workpiece must be taken into account. 

The axisymmetric stamping of sheet metals by 
hemispherical punches is a typical process in practice 
and is also a characterised test for evaluating the 
formability of sheet metals. Johnson and Singh [1] 
studied the problem experimentally and found that 
the springback of a circular plate increases as the 
radius of the plate decreases, and that a central gap 
between the punch and plate exists. Yu and Johnson 
[2] presented an analytical solution using an analogy 
between a linear elastic beam and a rigid/linear work- 
hardening beam beyond yield. Later, Yu, Johnson 
and Stronge rL3,4 ] extended the above study by assum- 
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ing that the plate material was either perfectly elastic 
or rigid-perfectly plastic, to avoid mathematical 
difficulties dividing the plate into a central and an 
outer portion and considering that the former follows 
precisely the surface profile of the punch and that the 
latter has a conical shape. Assuming that the interac- 
tion between the punch and plate surfaces can be 
replaced by a concentrated ring load, Zhang, Yu and 
Wang [5] analysed the stamping process with a coni- 
cal die. The variation of the ring load radius was 
accommodated by an experimental relationship. Ac- 
cording to the experimental study of Lu and Ong [6], 
however, the contact-force distribution between ,he 
punch and plate will deviate largely from a ring load 
when the plate is deformed considerably. Recently, 
Kormi et al. [7] tried to simulate the process by the 
finite-element method, but their results were net con- 
sistent with experimental observations [I,5,6]. 

The present paper proposes a simple but reliable 
algorithm for the axisymmetric stamping of circular 
sheet by a hemispherical punch. The applicable range 
of small and large deflection theories of plate bending 
to this type of problems is explored. 
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2. Algorithm for elastic-plastic contact problems 

2. I. Sohaion strategy 

Consider the contact between two bodies, a rigid 
punch and a deformable plate, which is described by 
the compatibility conditions: 

g_>0, q < 0 ,  g q = 0 ,  (1) 

where g is the gap between the surfaces of the punch 
and plate at a point and q is the normal contact stress 
at the point. The above conditions indicate that: (i) the 
plate cannot penetrate into the punch; and (ii) the 
contact stress is compressive for a pair of  points in 
contact, but zero for others. 

In solving an elastic-plastic contact problem, the 
increment of the external load or displacement is con- 
trolled by the smallest value of the following governing 
factors. (1) r~: the extent of plasticity; (2) r,: the maxi- 
mum strain increment; (3) r3: the maximum rotation 
increment; (4) r4: the penetration condition; and (5) rs: 
the separation condition. 

The first three factors concern the monitoring of the 
deformation of the plate and the last two are for 
contact adjustment. For example, when the stress at a 
point in the plate is greater than the yield stress, r~ 
should be computed to ascertain the stress state of the 
yielding surface. Nevertheless, ra must be calculated to 
prevent the penetration of the plate into the punch. In 
addition, since the plate does not adhere to the punch, 
a contact point may be separated from the punch 
surface. Hence, r5 needs to be assigned to ensure zero 
force at a point without contact. 

Factors rt, r 2 and r 3 can be determined properly by 
the consistent elastic-plastic algorithm [8]. However, 
the increment of the external load or displacement 
should be controlled by the smallest value of  r 4 and rs, 
as described below. 

The plate is first divided into finite-difference meshes, 
thus only a finite number of nodes need to be consid- 
ered in the contact treatment. These nodes are of two 
types: contact nodes and free nodes. The contact force 
on a pair of nodes in contact is unknown in advance 
but is a function of  the incremental nodal displacement 
and the resultant forces, i.e.: 

t~q =f (w ,  6w, ~ M~, 6 Mo), (2a) 

when the small deflection theory of plate bending is 
used, or: 

dq = f (w,  6w, No, t~ No, N~, dive, 6Mr, t~ Mo), (2b) 

when the large deflection theory is employed. In the 
above equations, w, Mr, M,, N, and No are deflection, 
bending moments and membrane forces in the radial 
and circumferential directions, respectively. 

Now, if ~/ 'J=0 describes the profile of  the punch 
surface at the J-th displacement step, then the corre- 
sponding displacements for all of  the contact nodes 
must satisfy this instant surface equation. For free 
nodes, the contact forces are zero and no displacement 
constraint applies. In an incremcntal displacement 
scheme, a displacement increment 6zf J is applied to the 
punch at the J-th step. After a calculation of  the plate 
deformation, the converged results must be analysed to 
examine the current contact state and to see if the 
applied incremental disr!acement needs to be re-exam- 
ined. If neither penetration nor traction force is ob- 
served, the obtained deformation state is correct; 
otherwise, 6A J must be amended and the whole calcu- 
lation repeated. The instant resultant punch load can be 
calculated by integrating the contact stress over the 
contact zone. The above solution strategy can be pre- 
sented more clearly by the following statement: 

(a) apply an increnwntal displacement 6A J, 
(b) f ind the deflection o f  the plate, 
(c) i f  any penetration occurs, modij), 6J  J and return to 
step (a) (i.e., i f  (R~, - (dA, , ,o , ) /R ,>Toi ,  =, gA s =  
(r4),,,i, f i d  J, where (r4),,,i,= (di),,,i,,/Rt,; otherwise con- 
t#tue, 

(d) i f  any traction jbrces are detected, modify 6A J and 
return to step (a) (i.e., i f  (qi) ....... > 0  attd [(qA ........ / 

* Tolz =~ (q) ....... I > 6zJ"= (rs),,,,,t~A J, where (r5) ...... = 
* . T°i , - / i (q , )  ....... / (q , )  ...... l, otherwise c o n t i n u e ,  

(e) update cariabies (e.g., stresses, strains and dispktce- 
merits)). 

In the above algorithm, R r and d, are the radius of  the 
hemispherical punch and the distance between the cen- 
tre of the punch and the i-th node on the plate, see Fig. 
1. Quantities q; and q* are respectively the normal 
nodal force of contact on the i-th node at the current 
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Fig. I. Penetration of the plate into the punch surface. 
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Fig. 2. Flowchart  o f  the solution strateg~r. 

iteration step and that at the converged incremental 
step &A J-t .  Quantities Tol~ and Tol, are the given 
tolerances tbr examining the penetration and traction 
of a aode, the magnitudes of which depend on the 
computational accuracy required. (Toi~ =0.002 and 
To12 = 0.1 were used throughout the calculation in this 
paper.) Quantities (dAtum and (q~)max in steps (c) and (d) 
are thus two indicators for the judgments. The modifi- 
cation of 6A s is based on the node with the maximum 
value of penetration or traction force. The associated 
flowchart of the solation strategy is shown in Fig. 2. 

pt'ltch di.spluceillet2l slcp ,.rod tie ~tttd eA ¢tre l]t~, c~Jtlrer- 
genee imh'.¥es JOt kinetic em'rg.v cmd residual force. 
re.~pecti,'ell'; 

(b) a.ppl.l' a new increment O[pmwh di.spla,ement ~i..l~: 
(c) X" = 0. , = 0: .V;~'c!/.i' X' :  
(d )  " "  S , =  0 ( i  = I . . . . . .  'V,,,,,,I); exert, hotmdarv conditionx: 
( c )  determine X" and i t e r a t e  t j  nece.~sctr~,; 
(f) f o rm  M; 
(g) compute &;"; 
(h) /J  the node wt:ls elastic i~; the last load step. 
conth~ue, otherwise turn to (j); 
(i) / /  the node is still elastic (this must be true when 
n = 0), d a " =  da',k and turn to (k); i f  it becomes 
phz~'tic, da" (1 ~ . . . . . .  ~ "C" = - 1 yaa,. + 1 --,,/, d~:" and turn to (k). 
where q " = - ( f i ' f - Y  ) , ( f i " - ~ " )  is the proportional 

.fitctor: i f  necessary, sub- - im ' rementa l  steps can be 
used in calculating dcr"', 
[j) i]" the m~de is still plastic (this must  he true when 

11 n = 0), d a "  = C,p d~," luse sub - incremental st tTs i[ 
necessary). (1 it becomes elastic, d a " =  drr',l; 
(k) tempor,.,rily upthtte the stresses (a" " i = a" -t- da") 
and relerant variables; 
(1) calcuktte the d i s -  equilibrium force R" .  
(m) i f  IRf"l -< e,~ (L  = u, r, ,,'), turn to (u): otherwise 
eolllilllle; 

(n) ealcuktte .... 

(o) obtain X" + "~" 
(p) ( / E l  . . . .  y_i~= i(.f~., , i _,)_, -<k, turn to (u); otherwise 
eolllilllte; 

(q) cak'uhtte X ''+ 1. 
(r) apply boundary conditions; 
(s) calculate the cmttact Jorces; 
(t) n = n 4 - 1 ;  i f  n >  N ...... . stop; otherwise returtt to 
step (f), 
(u) update displaccntcnts and con tact.forces, temporar- 
ily; 
( v ) / f  any penetration occurs, 6A J = (d,),,,,,6A J/Rp and 
return to (c); otherwise conthtue; 
(w) t f  any traction forces are detected. 6/J J =  

(Tolz)6A J/i(qi) ......./(q,)*,~,.[ and return to (c); otherwise 
eontimte; 
(x) update corresponding variables: 
(y) ~fzl > A ...... stop; otherwise, J = J + / and  return to 
step (b). 

2.2. Tile algorithm 3. Application 

According to the above discussion, a complete al- 
gorithm for the elastic-plastic contact problem com- 
bined with the consistent DXDR method [81 can be 
obtained as follows: 

(a) J = 1, specify N ,  ..... eR, ek, and d ....... where J is 
displacement of the punch, J is the number o f  the 

3. I. Modelling o f  circular plates uml: ,. axisymnwtric  
s tamping 

As an application example of the above algorithm, 
consider the stamping of a circular plate pressed by a 
hemispherical punch in a conical die (Fig. 3). The 
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Fig. 3. The stamping process. 

deformation of the plate can be modelled by the 
boundary value problem shown in Fig. 4. Assume that 
the friction coefficient between the plate periphery and 
the conical die surface is/J, that the friction between the 
surfaces of punch and plate is negligible and that the 
semi-angle of the die is ~b. In Fig. 4(a), F, and F2 are 
respectively the friction force and normal reaction on 
the plate due to the die. Hence, the boundary forces on 
the plate, NR and MR in Fig. 4(b), are: 

f - P(cos 4b - # sin ~b) 
NR = 27r(R + UR)(sin ~b + # cos ~) '  

1 (3) 
MR =~hN., 
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Fig. 5. Distribution of contact pressure for the elastic- plastic circular 
plate: (a) zl/h <_ 0.6; (b) eJ/h = 3 and 4.5. 

where h and R are the thickness and radius of the 
circular plate before deformation, respectively. 

The plate deformation is analysed using both small 
and large deflection theories of bending. The plate 
material follows the simple ./2 flow theory of  plasticity 
and the linear isotropic hardening rule. The material 
constants are Young's modulus E =  196.2 GPa, work- 
hardening modulus Et = 1.42 GPa, Poisson's ratio o = 
0.2862 and yield stress Y=  201.1 MPa. The plate is of 
radius R = 75 mm and thickness h = 2 mm. The diame- 
ter of the hemispherical punch is 200 mm. The semi-an- 
gle of  the conical die is ~b = 20 ° and the friction 
coefficient between the plate and die is p = 0.2. 

3.2. Results and discussion 

f 

I . . . .  0 
t 

(b) • 1 

R _1 

I MR 

Fig. 4. Mechanical model of the workpiece. 

NR 

Fig. 5 demonstrates the interaction of the hemispher- 
ical punch with the circular plates. The distribution of 
the contact force varies significantly with the punch 
displacement (see the curves from the large deflection 
theory). When A/h is small, the plate centre is subjected 
to the maximum contact stress. It is clear from the 
figure that the contact stresses are very different from a 
locally-uniform distribution used for approximate 
analyses [3]. 
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As the stamping proceeds, the contact stress at the 
plate centre decreases considerably and a central gap 
between the punch and plate surfaces appears when 
A/h reaches 2.8, Fig. 5(b) and Fig. 6. This is in agree- 
menr with earlier experimental observations [1,5.6] 

The development of the central gap is shown more 
clearly in Fig. 6. The magnitude of the gap at the plate 
centre, go, increases rapidly with increasing bending, 
but approaches a constant value af ter /J /h  reaches 4. it 
is clear that the gap will not disappear before coining 
takes place. The appearance and development of the 
gap is controlled mainly by the material properties of 
the plate, which govern the variation of  the plate 
curvature during bending. 

The theoretical relationship between the external 
load P and the diameter of the contact zone ,t~. and 
that between the punch displacement A and d,, are in 
very good agreement with the experimental results [5,6], 
Fig. 7a and 7b. which confirms the accuracy and reli- 
ability of the proposed algorithm. 

The applicable range of the small deflection theory to 
plate stamping can be examined by comparing its pre- 
diction with that from the large deflection theory. Fig. 
8 shows the variation of  the non-dimensional external 
load, P/OtMp, with the non-dimensional punch displace- 
ment, A/h, for both elastic and elastic-plastic plates 
using small (S) and large (L) deflection theories. When 
zl/h < 0.7, all the solutions, both elastic and elastic- 
plastic, from small or large deflection theories, are very 
close to each other. In this regime, the effect of mem- 
brane forces is negligible and the plastic deformation is 
very localised, thus the overall deflection of the plate is 
controlled by the elastic properties of the material. 
However, if the prediction of the contact forces be- 
tween the plate and punch is important, the small 
deflection theory is applicable only when z/ /h<0.5,  
beyond this the distribution of the contact forces given 
by the small deflection theory being totally wrong (Fig. 
5). 
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Fig. 7. Variation of contact zone diameter in the large deflection 
elastic-plastic plate: (a) with external load: (bl with punch displace- 
ment. 

4. Conclusions 

1. An efficient algorithm for solving contact prob- 
lems associated with elastic-plastic stamping of circular 
plates has been proposed. The algorithm is reliable and 
can be extended for further complex stamping prob- 
lems. 
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Fig. 6. Development of a central gap between the punch and the plate 
surface. 
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Fig. 8. Comparison between different load-punch displacement 
c u r v e s .  
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2. In stamping a circular plate the distribution of the 
contact stress between the plate and punch varies with 
the punch displacement. The maximum contact stress 
occurs at the plate centre initially and moves outwards 
when the plate is deformed further. A central gap 
between the punch and the plate will appear and will 
not disappear before coining. 

3. The applicability of the small deflection theory of 
bending to plate stamping is more limited than is 
usually thought when an adequate prediction of the 
contact stress is required. 

Appendix 
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R 
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u, O, W 
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A. Nomenclature 

elastic-plastic stress-strain matrix 
outer diameter of the contact zone 
distance between the centre of the punch 
and the i-th node on the plate 
the convergence indices for kinetic energy 
and residual force of the dynam:,c system 
Young's modulus 
gap between the plate and punch 
thickness of the plate 
bending moment 
diagonal mass matrix of the discrete sys- 
tem ([m~]) 
fully plastic bending moment, Yh2/4 
membrane force 
maximum iteration number with respect to 
fictitious time 
total node number of the discrete system 
number of iteration 
total external load 
normal contact pressure 
radius of the circular plate 
vector of residual forces of the discrete 
system 
radius of the hemispherical punch 
radial coordinate 
displacement components in x, y and : di- 
rections, respectively 
vector of solution of the discrete system 
initial vector for iteration 
vector of  fictitious velocity of the discrete 
system 
yield stress 

z direction normal to the mid-plane of  the 
plate 
non-dimensional parameter, R-,Rph 

J displacement of  the punch 
6(...) a small increment of quantity (...) 
e normal strain 
-~ critical node damping factor 
r/ proportional factor 
~b semi-angle of  the conical die 
g friction coefficient between the workpiece 

and the conical die 
v Poisson's ratio 
a normal stress 
0 effective stress 
~' punch surface equation 

Superscripts and subscripts 
i node i 
J the number of displacement step 
L indication of three perpendicular directions 

coincident with displacement u, v, and w, 
respectively 

n n-th iteration step 
r, 0 r and 0 directions 
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