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Industrial Summary 

This paper studied the deformation mechanisms of sheet metals stamped by rigid punches 
and deformable dies. Emphasis was placed on the development of elastic plastic zones in the 
sheet workpieces, on the functions of the die parameters and on their correlations with 
spring-back. It was found that the reduction of spring-back was due mainly to the interface 
interaction offered by the dies. The paper provides new insight into processing techniques 
subjected to plane-strain conditions. 

Nomenclature 

a half contact-length between the plate and the punch, see Fig. l and Eq. (19) 
b width of the plate 
c half-width of the elastic stress/strain distribution on a plate section, 

see Figs. 5 and 6 
d distance between the mid-plane and the neutral stress/strain plane of the plate, 

see also Figs. 5 and 6 
E Young's modulus of the plate material 
Ef Young's modulus of the elastic foundation 
Ep plastic hardening modulus of the plate material, see also Fig. 4 
e non-dimensional parameter, defined as Ep/E 

h thickness of the plate 
k spring constant, see Fig. 3 
L half-length of the plate in contact with the die, see Figs. 1 3 
M bending moment on a plate section 
Me maximum elastic bending moment, defined by Eq. (3) 
m non-dimensional bending moment, see Eq. (2) 
N axial force on a plate section 
Ne maximum elastic axial force, defined by Eq. (3) 
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n non-dimensional axial force, defined by Eq. (2) 
p(x) normal force on the plate surface, see Fig. 2 
q(x) tangential force on the plate surface, see Fig. 2 
u horizontal displacement at the end of the plate, see Fig. 3 
w deflection of the plate 
x horizontal coordinate 
7, 6 non-dimensional parameters, defined by Eq. (4) 
e strain 
~v yield strain, -- Crv/E 

non-dimensional coordinate, defined as x/L 
t/ non-dimensional deflection, defined a s  w/(LZtce) 
O the springback ratio, defined by Eq. (13) 
~c curvature at x 
~ce maximum elastic curvature at x 

proportional function for interface friction, defined by Eq. (1) 
v Poisson's ratio of the plate material 
vf Poisson's ratio of the elastic foundation 

material parameter, see Fig. 4 
~r v yield stress of the plate material, see Fig. 4 
~b non-dimensional curvature, defined by Eq. (2) 
~b R non-dimensional residual curvature, defined a s  / £R/ / (  e 

Superscripts 
c central section, i.e., the plate section at x = 0 
U upper surface of the plate 
L lower surface of the plate 

1. Introduction 

The technique of elastic-plastic sheet stamping has been employed extensively in 
the forming of a variety of engineering components. In addition to the conventional 
processes, with unitary rigid dies, a technique of sheet stamping by deformable 
forming tools (SSDFT) has been established and designed into a wide range of 
pressworking [1]. Compared with conventional process, SSDFT possesses the dis- 
tinct advantages of low tooling costs, flexibility of producible shapes, the capability for 
providing "scratch-free" surfaces which is most suitable for parts with coated or 
polished surfaces, and a remarkable reduction of spring-back and wrinkling which is 
extremely important for hard-to-forming sheet materials. Unfortunately, the process 
has not been studied carefully so that proper guidelines are not available for practical 
manufacturing design. 

The present paper aims to investigate, with the aid of mechanics modelling, the 
deformation mechanisms of sheet metals stamped by rigid punches and deformable 
dies. The development of elastic-plastic zones in the sheet workpieces, the functions of 
die parameters and their correlations with spring-back are addressed in detail. 
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The study reveals that the reduction of spring-back is due mainly to the interface 
interaction offered by the dies. The paper provides new insight into processing 
techniques subjected to plane-strain conditions. 

2. Problem characterisation 

2.1. Stamping of wide plates by deformable dies 

Consider a wide thin plate resting on a deformable die stamped by a rigid 
cylindrical punch, see Fig. 1. The deformation of the plate is symmetrical and the 
bending is cylindrical. On the upper surface of the plate, there are a normal contact 
force pU(x) and a tangential force qU(x) distributed over a small contact arc, AA'. On 
the lower surface, the corresponding forces are pL(x) and qe(x), respectively, see Fig. 2, 
exerted on the contact length, 2L, which is less than the whole length of the plate 
because of the existence of lifted parts at the ends. Owing to the symmetry of 
deformation, pU(x) and pL(x) must be symmetrical but qV(x) and qL(x) anti-symmetri- 
cal, with respect to x. 

2.2. Mechanics modelling 

To explore clearly the deformation mechanism of the plate, it is essential to distil 
a mechanics model for the above engineering process, that can reflect the main 
characteristics of the original but also can simplify the problem to a great extent such 
that an analytical solution can be generated.1 

It is reasonable to assume, by noting the small plate thickness, that qU(x) and qL(x) 
contribute to the total axial force N(x) only, whilst pU(x) and pC(x) contribute to the 
bending moment M(x) only. The mechanics model is shown in Fig. 3. A thin plate of 
thickness h, width b and length 2L (h ~ 2L) subjected to a set of transverse loads 
(distributed uniformly along the width b) is simply supported but with variable axial 
restraints (springs) at the two ends. The springs provide a uniform axial force (as 
a function of the plate deflection to simulate possible external tension). Another part 
of N is assumed to be proportional to pL(X) to represent the friction on the interface. 
Consequently: 

L 

N ( x )  = b fU(4)pL(~)d4 + ku, 
x 

(1) 

where p(x) is a proportional function, k is the stiffness of the springs and u is the 
horizontal displacement at the plate ends (Fig. 3). 

l Although numerical methods such as the finite-element and finite-difference methods could be applied to 
take into account more details, they cannot replace a modelling approach that reveals thoroughly the 
deformation mechanisms. 
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Fig. 1. Stamping by a deformable die. 
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Fig. 2. Interface forces on the plate. 
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Fig. 3. A mechanics model for plate stamping. 

3. Analysis 

3.1. Load-curvature  relationships 

A comple te  relat ionship between internal  loads and  deformat ion  at any plate 
section should be established first. The  uniaxial  stress strain behav iour  of  mos t  sheet 
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Fig. 4. The stress strain curve of the plate material. 
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Fig. 5. Strain distr ibution across the plate thickness. 

metals can be characterised by the model shown in Fig. 4. When the length of the 
yield platform approaches zero (i.e., ~ ~ 0), it represents an elastic linearly plastic 
hardening material, but when the hardening modulus Ep is zero, it becomes an 
elastic perfectly plastic model. Assuming that plane sections of the plate remain plane 
throughout the deformation, the strain across the plate thickness is then always linear, 
see Fig. 5. Correspondingly, the stress distribution across a plate section at coordinate 
x under different combinations of M and N must be one of the following six types (see 
Fig. 6): 2 (i) the pure elastic state (S1); (ii) the single-side perfectly plastic state ($2); 
(iii) the double-side perfectly plastic state (S3(a)); (iv) the single-side hardening plastic 
state with the other side being elastic (S3(b)); (v) the single-side hardening plastic state 
with the other side being perfectly plastic ($4); and (vi) the double-side hardening 
plastic state ($5). 

The non-dimensional bending moment, axial force and curvature, are defined as 
follows: 

M N /c 
In - Me' n - Ne' q5 = --'Ke (2) 

2 In the description of Figs. 5 and 6 it has been assumed that the neutral strain and neutral stress layers arc 
identical: refined theories can be found in [1]. 
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Fig. 6. Possible stress states in the plate. 

where 

2av 
M e  = u v b h  2, Ne  = u v b h ,  Ke - h E  (3) 

are the maximum elastic bending moment; the maximum elastic axial force; and the 
maximum elastic curvature; respectively, in which Uv is the yield stress and E is 
Young's modulus. Furthermore, the non-dimensional parameters 

c d 
6 - (4) 

7 - ( h / 2 ) '  ( h / 2 )  

are introduced throughout the analysis (c and d are shown in Figs. 5 & 6). The 
load-curvature relationships for the above six states and their corresponding bound- 
ary conditions can be obtained from Figs. 5 & 6 directly: 

(S1) 1 + 6 - 7 ~ < 0 :  

6 1 
n = - ,  m = - ,  4 ' = m .  

7 

($2) l + 6 - 7 > ~ O a n d  1 - 6 - 7 ~ < 0 :  

1 
n = 1 ~7 (l -- t~ -}- 7) 2, 

1 
m = 4 7 7 ( 1 - 6 + o / ) 2 1 - 3 - ( 1 - 6 + 7 ) ] ,  

t m 12" 4 ' = 4 ( 1 - n ) /  3 1 -  

(5) 

(6) 
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There  are two possibilities for the further deve lopment  of the present  stress state, 
relying on the pa rame te r  of the mater ia l  proper ty ,  4. Fo r  example,  if ~ is relatively 
large the stress state will evolve into (S3(a)), otherwise if it is very close to unity the 
following state will be (S3(b)). 

(S3(a)) 1 - 6 - ? > ~ O a n d  1 + ~  ~/~<0:  

n = 5, m = 3(1 -- 6 z) -- 172, ~b = [3(1 - n 2) - 2m] - 1/2 (7) 

(S3(b)) 1 - 6 - 7 ~ 0 a n d  1 + 6 - 3 7 > ~ 0 :  

1 (1 - -  () -{- 7)2 q- e 1 + • 4?) 2, 
" = 1 - 4 5  ~?(  - 

1 e 
m = ~ (1 -- 6 + ?)2 [3 -- (1 -- c~ + 7)] + ~ (1 + 6 -- d?) 2 [3 -- (1 + 6 -- ~7)], (8) 

where e = Ep/E. According to Eq. (8a): 

6=(1--e)- ' { l+e+(1--e~)7--~e[(~-- l )272+4(n--~ - -  n_,) 1} ? + 4  . 
e 

(9) 

The  load-curva ture  relat ionship can be ob ta ined  explicitly if Eq. (9) is subst i tuted into 
Eq. (8b) and  7 is replaced by ~b- 1. Part icularly,  if e approaches  zero, (5 in Eq. (9) will 
becomes  that  of ($2). Any further deve lopment  of  stress state f rom either (S3(a)) or  
(S3(b)) will lead to ($4). 

($4) 1 + 6 - 3 7 ~ > 0 ,  1 - 6 - 7 ~ > 0 a n d  1 - 6 - 3 7 ~ < 0 :  

n = 6 + ~ ( 1  + 6 - - ~ ? ) 2 ,  
, [  

(10) 
3 1 1 2  e 1 m = ~ (  - - 6 2 ) - - ~ 7  +~/7(  + 5 -- ~?)2 [3 -- (1 + 6 - - ~ 7 ) ] .  

An explicit l o a d - c u r v a t u r e  relat ionship can be derived when ? = 4) 1 and 

,5 = { 2 x / ? [  7 + e(1 -- ~, + n)] e(1 -- 37) 27}/e ( l l )  

are subst i tuted into Eq. (10b). Similarly, Eq. (1 l) will be identical to that  of  (S3(a)) 
when e approaches  zero. 

($5) 1 - 6 - ~ ; , ~ > 0 :  

[ e  1 n =  1 + - ( 1 - - ¢ 7 )  6, 

7 (12) 
3 1 2 e 

m = ~ (1 -- 6 2) -- ~ 7 + ~ [(1 - -  ~7)2(2 + ~7) + 3 ~ ? ( ) 2 ]  • 



L.C. Zhang / Journal of Materials Processing Technology 53 (1995) 798-810 805 

The combination of Eqs. (12a) and (12b) gives rise to the load-curvature relationship 
straight-forwardly. 

There are two special cases, ~ = 1 (e ~ 0) and e = 0. In the former, only regimes 
(S1), (S3(b)) and ($5) will appear, but in the latter only (S1), ($2) and (S3(a)) will occur, 
which is the case studied by Yu and Johnson I-2]. 

3.2. S p r i n g - b a c k  ratio 

If the unloading process is totally elastic, the spring-back ratio of a plate section, O, 
is given by: 

(13) 

when the bending moment and axial force have been removed, where 
~)R = l~,R/Ke = ~ __ m is the non-dimensional residual curvature of the plate. Accord- 
ingly, with 0 and m determined by Eqs. (5)-(12), O can be predicted very easily from 
Eq. (13). 

3.3. Deflection curve 

Because of the symmetry of deformation, only half of the plate, say 0 ~< x ~< L, needs 
to be analysed, see Figs. 1-3. The deflection curve of the plate is determined by 
integrating the deflection-curvature equation: 

d2w ~c(x) 1 + = 0. 
dx 2 \ d x ]  J 

(14) 

When w is small compared with L, Eq. (14) can be simplified to: 

d 2 w  
dx ~c(x) = O. (15) 

Introducing the non-dimensional deflection ~/and coordinate (, i.e.: 

w w h E  x 

= /-ZKe~ --  2L20.y , ~ = ~ ,  (16) 

Eq. (15) becomes 

d2q  
d~ 2 ~ = 0. (17) 

The boundary conditions in the present case are: 

~=1 = O, d~ ~=o = O. (18) 
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3.4. Solution procedure 

The detailed explicit expressions derived above enable solutions to be obtained 
easily. The following procedures are used for the numerical calculations in the present 
paper: 

(i) determine n with the value of r/* given; 
(ii) compute m(() according to the given loads pU and pL; 
(iii) calculate ~b((); 
(iv) integrate Eq. (17) to obtain t/(~) under the conditions specified by Eq. (18); 
(v) if q~ ~ r/*, calculate O and stop, otherwise, continue; 
(vi) let ~/* = t/c and return to step (i). 

4. Discussion 

To obtain a detailed diagram for the correlation of the deformation of the plate and 
the die, a convenient and natural starting point is to assume that both pL(x) and pU(x) 
are Hertzian, i.e.: 

pU(x) = /)U(1- X2~1/2 (1 X2~1/2 
a~/I , pL(x ) = fiL -- ~2 y ' (19) 

where a is the half length of the contact arc AA' between the punch and plate, see 
Fig. 1, and/5 L and/5 U are the maximum pressure values of pL(x) and pU(x) at x = 0 
related by force equilibrium in the z-direction (it is assumed that the springs do not 
contribute in this direction). This gives rise to/~L = afiU/L. The bending moment in the 
plate is therefore: 

aLpU 2 ~ _ ( 2 ) 3 _ ( ~  
m(~)= h20.~ ~- --~a2/ j 

-- ~ 1 - -~+arcs lnT-~ . - -  

f o r O ~ ( ~ ,  
(2o1 

t m(()----- h2-- v 

for (a ~< (~< 1, 

where (a = alL. As will be discussed below, G is an important parameter for the 
SSDFT that represents largely the relative mechanical properties of the plate and die 
materials, and which influences the deformation of the plate significantly. 
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F ig .  7. Ef fec t  o f  # o n  t h e  s p r i n g  b a c k  r a t i o ,  fo r  ~a = 0.8 a n d  k = 1.5. 

A relevant study concerning the receding contact between a plate and an elastic 
foundation showed that the variation of ~a is non-linear even when the plate is elastic 
[3]. Nevertheless, when a approaches h, the value of L will become constant [4], 
governed by the materials constants of the plate and foundation: 

L=h(l'g45E(1E~i--~)-- v2)']l/3J ' (21) 

where Ef and vf are Young's modulus and Poisson's ratio of the foundation, respec- 
tively. Although the condition for obtaining Eq. (21) differs to a certain extent from the 
present stamping processes, it can be used to demonstrate qualitatively the import- 
ance of the ratio of E to Ee in a stamping process if the foundation is thought of as 
a die. It indicates that for a given plate material (E given), a softer die (smaller Ef) will 
bring about a larger value of L and vice versa. 

The axial force in the plate is, according to Eq. (1), 

alt~ U fro ) kL 2 
n = 2avh \ 2 - arc sin ~ - ~ ~ + E b ~  t/c, (22) 

where/ t  has been assumed to be independent of x and the central deflection of the 
plate, wo (its dimensionless quantity is t/c), is considered to be much smaller than L. 

The dependence of the spring-back ratio upon parameters k, ~ and # are presented 
in Figs. 7-9  within the idealisation of the present modelling (in all cases ~ = 1.05, 
e = 0.2, ay/E = 1/3, h/L = 0.1 and b = 1). Generally, increasing k and/~ decreases the 
spring back ratio and hence indicates that both axial tension and interface friction 
between the plate and die are principal factors in the reduction of O. It is easy to see, 
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Fig. 9. E f f e c t  o f  ~a o n  t h e  s p r i n g  b a c k  r a t i o ,  f o r  k = 1.5 and /~  = 0.1. 

however, that the contribution of/z is more localised under the assumption that qL(x) 
is proportional to pL(x) and that # itself is independent of  x. Furthermore, in the case 
of  zero external tension, dies with higher friction properties would be better for the 
shape maintaining of workpieces after unloading. 

N o w  consider the effect of  (a in Fig. 9. As have been discussed, a larger value of (a 
could be considered as a stamping associated with a harder die (and vice versa) where 
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Fig .  10. D e v e l o p m e n t  o f  p l a s t i c  z o n e s  f o r  (a = 0.8,  # = 0 .5  a n d :  (a) qc = 0.7,  k = 1.5; (b) ~/c = 1.2, k = 0.5; 

a n d  (c) r/c = 1.2, k = 1.5. 

according to the results shown in Fig. 9, this causes larger spring-back ratio. 
However, if the die is too soft, as is the case of Ca = 0.08, the residual curvature of the 
plate will be very non-uniform which is usually not desirable in practical stamping. 
Hence, the selection of the die material should be made carefully by considering the 
particular shaping requirement of individual stamping processes. 

The inherent mechanism of the variation of O with the change of k, # and Ca is 
indeed due to the change of the deformation mechanism of the plate, as shown 
in Fig. 10. With constant values of k, /~ and Ca, the upper compressive plastic 
zone shrinks when the punch displacement increases (represented by the increase 
of r/c here, see Figs. 10(a) and (c)). Tensile plastic deformation is dominant in this 
case. When k decreases, however, the compressive plastic deformation becomes 
considerable, which is why the value of O is remarkable for smaller values of k 
(Fig. 8). 

A comparison of the present results with those of conventional stamping by rigid 
dies can also be made. An obvious difference is that a SSDFT leads to workpieces with 
a much smoother distribution of curvature, which is not difficult to understand if the 
distinct loading stages (blank bending and ironing) and their corresponding deforma- 
tion mechanisms in the conventional processes [1] are recalled. During blank 
bending, the contact between the plate and the punch surface is not continuous, 
caused by many localised curvature peaks. These peaks are usually very difficult to be 
ironed out in the following ironing stage. In a SSDFT, however, there is no blank 
bending, the deformable die always trying to make the plate match the punch surface 
through the interaction force pL(x). 

Results representing real stamping processes can be obtained by using a realistic 
distribution of interface forces determined by the theory of contact mechanics or by 
experimental measurement. 
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5. Conclusions 

A mechanics model has been proposed to study the plate stamping process by 
deformable dies subjected to plane-strain conditions. There are six possible stress 
states for any plate section, depending on the combination of axial force and bending 
moment. It has been found that the spring-back ratio is affected strongly by the 
properties of the deformable die for a given plate material. The friction properties and 
the relative magnitude of the elastic constants of the dies are the key parameters in 
process design. All of these can be interpreted by the detailed analysis of the develop- 
ment of the plastic zone in the plate. 
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