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SUMMARY 
This paper proposed a new efficient method, the consistent DXDR method, for analysing general elastic- 
plastic problems. Two important factors in computational plasticity, the convergence and stability, were 
addressed. The method was constructed through a natural combination of two vital components: the DXDR 
algorithm which had been proved to be a powerful equation solver developed by the authors and a stable 
consistent algorithm for the integration of the constitutive equations of plasticity. Numerical examples 
demonstrated in detail the efficiency, accuracy, and stability attainable in solving various engineering 
problems. 
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1. INTRODUCTION 

In order to analyse various engineering problems with both material and geometrical non- 
linearity, a stable and efficient numerical method is essential. Consequently, the development of 
powerful algorithms suitable for a wide range of complex problems has been an important subject 
for many decades. 

A newly developed dynamic relaxation method, the DXDR method,' has shown its promising 
potential with a number of distinguished features. For example, it is very reliable and stable for 
seeking an equilibrium state for non-linear problems; it has a fixed simple algorithm so that the 
programming becomes straightforward; and it needs not to solve large scale equations directly 
because of its explicit formulation. However, in the application, of the DXDR method to 
elastic-plastic problems, a direct and important issue is how to combine an appropriate algo- 
rithm for integrating the constitutive equations over a discrete sequence of incremental steps. This 
algorithm should have a higher stability in dealing with the integration of the constitutive 
equations and in the mean time possess a higher compatibility with the DXDR method (an ability 
to enhance the merits of this method). 

Recently, the conception of consistency between the tangent operator and the integration 
algorithm has received increasing attention and been found to play an important role in 
preserving the quadratic rate of asymptotic convergence of iteration solution.' It has been shown 
that if a consistency condition is satisfied, the stress increment predicted by the tangent operator 
based on the strain increment will correspond to the stress increment predicted by the integration 
procedure to the first order. In other words, the stability of the algorithm to integrate the 
constitutive equations would be guaranteed by using a tangent operator consistent with the 
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algorithm. This algorithm is much more stable than the continuum one, allows larger load steps 
and in turn reduces computational time and cost to a great extent. Furthermore, it provides high 
accuracy for both single step and subincrementation schemes and does not require the computa- 
tion of contact stresses on the yield surface. Obviously, such a consistent algorithm is what the 
DXDR method would seek for. 

It is therefore the purpose of this paper to investigate the generation of a new numerical method 
for general elastic-plastic problems by a natural combination of the DXDR method with the 
consistent algorithm. Emphasis is focused on the exploration of the accuracy, stability, efficiency 
and compatibility of the new method for solving various engineering problems. 

2. PRINCIPLE OF THE DXDR METHOD 

The DXDR method, like other modified dynamic relaxation appro ache^,^.^ searches for the static 
solution of an equilibrium system by making use of the dynamic transient analysis and following 
a standard solution procedure. Therefore, the governing equations of a static system, 

P(X) = F (1) 

is replaced by its corresponding dynamic ones, 

MX + C% + P(X) = F (2) 

where the mass and damping matrices, M and C, are fictitiously chosen as diagonal ones so that 
the static solution could be obtained in a minimum number of pseudo-time steps. All the 
calculations become explicit when the central finite difference scheme is used. The explicit 
formulation for the solution vector X is given by 

where z" is the pseudo-time increment of the nth iteration and R" = F - P(X"). In the derivation 
of equations (3), the following relations has been applied: 

Cii = Ctmii (i = 1 , .  . . , Nlolal) 

where [? is the node damping factor at the nth iteration and is calculated by 

The initial to for iteration is determined by 

to = f ( X O  + X*) 
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where Xo and X* indicate, respectively, the initially guessed solution and the peaks of locus of 
X during iteration without damping.' The elements of M are determined by the Gerschgorin 
theorem, i.e. 

where m i  is the fictitious mass in direction L on node i (whereas mii in the equation ( 5 )  is the 
fictitious submass matrix for each node), and kij  is the element of the stiffness matrix K determined 
by 

The complete algorithm of the DXDR method could then be written as: 

(a) Xo = 0, n = 0; specify Xo, N,,,, eR and ek ,  where eR and ek are the convergence indexes of 

(b) 
(c) determine R o  and iterate if necessary, 
(d) form M, 
(e) calculate disequilibrium force R", 
(f) if I RV I < eR(L = u, u, w), stop; otherwise continue, 
(g) calculate n, 
(h) obtain * + ' I 2 ,  
(i) if E i = l  (xi ) < ek, stop; otherwise continue, 
(j) calculate X" + ', 
(k) apply boundary conditions, 
(1) n = n + 1; if n > N,,,, stop; otherwise return to step (d). 

the residual force and energy, respectively, 
= 0 ( i  = 1, . . . , Ntotal); exert boundary conditions, 

N . tn+1/2 2 

3. CONSISTENT INTEGRATION OF CONSTITUTIVE EQUATIONS 

3.1. Integration algorithms of constitutive equations 

Algorithms for the integration of constitutive equations play a central role in the analysis of 
elastic-plastic problems. The advantages and disadvantages of different methods, including the 
order of accuracy, stability, explicitness, and the rate of asymptotic convergence have been 
investigated extensively. Ortiz and Popov' generalized the trapezoidal and midpoint rules and 
investigated the numerical stability and accuracy. Nagtegaal and de Jong6 proved the conditional 
stability of tangent stifness-radial corrector method. R. D. Krieg and D. B. Krieg' studied the 
accuracy of this method for a non-hardening material and Schreyer et a1.' investigated it for an 
isotropic hardening material with a constant plastic modulus. In parallel, Rice and Tracey' 
presented the mean normal method for the plane strain condition with non-hardening materials. 
Wilkins" and Mendelson" proposed the elastic predictor-radial return method. Argyris et a1.I2 
discussed the stability of integration procedures for inelasticity. Ortiz and Simo' studied the 
accuracy problem of the return mapping algorithm and Krieg and Key14 extended the algorithm 
to involve isotropic and kinematic hardening properties. 

Yoder and Whirley15 demonstrated that there was an overall superiority of the radial return 
method over the other algorithms, particularly in the presence of hardening. Geometrically, this 
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method aims at finding the shortest distance of a point to a convex set. Within this framework, 
Simo and Taylor2 suggested consistent tangent operators for rate-independent elastic-plastic 
problems. An extension of this algorithm under plane stress condition with mixed hardening has 
been provided by Dodds. l 6  

The generalized trapezoidal rule (GTR) has the most distinguished characteristics in applica- 
tion. For instance, by using the flow rule associated with von Mises criterion and isotropic 
hardening, GTR gives 

a,,, = an + da. - 2G dep 

where G is the shear modulus, s is the deviatoric stress, and da, is the elastic stress increment 
corresponding to the strain increment. The incremental parameter 1 is determined by the 
condition that the updated stresses satisfy the consistency equation, $,,+ = 0. The parameter 
y may vary from 0 to 1, but if associated with the von Mises surface, the integration procedure 
becomes unconditionally stable when y 2 4 and conditionally stable when y -= 4.' n is a unit 
vector normal to the yield surface at the contact point and ii is the effective stress. 

The relationship between different integration procedures could simply be classified as 
follows: 

(a) Tangent predictor-radial returnI6 ( y  = 0): i.e. 
the commonly used continuum algorithm 

(b)  Mean normal16 ( y  = 4) 
(c) Elastic predictor-radial corrector2716 ( y  = 1) 

(2)  Mid-point rule (MR):  it becomes the GTR when von Mises 

Integration procedures 

criterion and linear hardening are used 

3.2. Continuum and consistent elastic-plastic tangent operators 

derived as follows 
Based on the above-mentioned procedures, the continuum and consistent operators can be 

3.2.1. The continuum operator. The general relationship between the incremental stress and 
strain in the elastic-plastic regime may be written as 

where C,, is the elastic-plastic stress strain matrix. If the operator C,, is derived based on the 
method (1-a), the tangent predictor of the continuum moduli will be produced. For the flow rule 
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associated with von Mises criterion and isotropic hardening, the general form of this operator is 

c,, = 

E 
l + v  

c,, = ~ 

- A - Nsf Sym. - 
r - Nsys, A - Ns; 
r - Ns,s, r - Ns,sy A - Nst 

(13) 
- NT,~s, - NT,s, - NtXys, GB- NzfY 

- NT~,S, NtyZsy  - NtyZs ,  - NT~,T,~  GF- NT;, 
- N T , , ~ ,  - N T , ~ ~  - N T , , ~ ,  - NT, ,T ,~  - NT,,T~~ GF- NT:, - 

1 - v  sf 
1 - 2 v  R 

V s, s y  

I - 2 v  n 
V SXSZ 

1 -2v  R 

1 - v  s; 
1-2v  R 

V SJSZ 

1-2v  a 

where 

and E and G are Young’s and shear moduli, respectively, v is Poisson’s ratio, 5 the effective stress 
and H the plastic modulus. 

To preserve the quadratic rate for asymptotic convergence, the integration algorithm must be 
consistent with the tangent operator. However, this becomes true only when the path-dependent 
straregy for strain increment is used in the above operator. This indicates that the constitutive 
equations should be integrated based on the corrective strain increment at the iteration step 
i when the non-converged results at step i - 1 is used as the initial conditions.16 Unfortunately, 
this strategy is not realistic because of some obvious disadvantages, such as the poor estimation of 
plastic flow over the iterations and false indication of elastic unloading. 

3.2.2. Consistent operator. The consistent operator can overcome the above difficulties. By 
following the approach (1-c), and making use of elastic predictor-radial corrector and equation 
(lo), an elastic-plastic consistent tangent operator can be derived 
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where A, r and N are defined by 

where K is the bulk modulus of the material and factors f l  and jj are given by 

1 ' = (1 + (H/3G))  -I- '- 
In equation (17), sT is the trial deviatoric stress based on an assumption of elastic behaviour. The 
above consistent tangent operator can easily be applied to the path-independent updating strategy. 
In this strategy, the integration of constitutive equations during each iteration are always based 
on the total strain increment of the load step, and the initial conditions are the converged results 
of the last load step.I6 It is extremely important for plasticity analysis. 

It is interesting to note that if very small load steps are used, p-, 1, and the continuum and 
consistent algorithms will bring about identical solutions. If the load steps are large, however, 
f l  will be significantly less than a unit and the two algorithms will go far away from each other. 

4. THE CONSISTENT DXDR ALGORITHM 

4.1. The algorithm 

follows: 
According to the discussion above, a complete consistent DXDR algorithm is proposed as 

(a) J = 0, specify N,,,, eR,  ek,  and J,,,, where J is the number of load steps, 
(b) apply a new external load increment, J = J + 1, 
(c) So = 0, n = O; specify Xo, 
(d) t;? = 0 ( i  = 1, .  . . , Ntolal); exert boundary conditions, 
(e) determine g o  and iterate if necessary, 
(f) form M, 
(g) compute den, 
(h) if the node was elastic in the last load step, continue, otherwise turn to (j), 

if the node is still elastic (this must be true when n = 0), do" = d e ,  
and turn to (k), if it becomes plastic, do" = (1 - R")doZ + R"CZ,d&" 
and turn to (k), where R" = (at - Y")/(e - 8") is the proportional factor; 
if necessary, subincremental steps could be used in calculating the do", 

if the node is still plastic (this must be true when n = 0), da" = CZ,de" 

if it becomes elastic, da" = at$, 
(use subincremental steps if necessary), 

(i) 1 
(j) 

(k) temporarily update the stresses (a"" = a" + da") and relevant variables, 

i 
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(1) calculate disequilibrium force R", 
(m) if I R Y J  < eR ( L  = u, u, w), turn to (t); otherwise continue, 
(n) calculate [;, 
(0) obtain %"+l/', 

(PI if C L "  E L  (.i.iLn+'/2)2 < ek, turn to (t); otherwise continue, 
(9) calculate X"+ ', 
(r) apply boundary conditions, 
(s) n = n + 1; if n > N,,,, stop; otherwise return to step (f), 
(t) update all corresponding variables, 
(u) if J =- J,,,, stop; otherwise return to (b). 

4.2. Applicability 

The algorithm is developed for solving quasi-static path-dependent or path-independent 
problems, such as those subjected to elastic or elastic-plastic deformation, proportional or 
disproportional loading, and those with or without bifurcations. However, this algorithm is not 
suitable for studying time-dependent problems because DXDR method involves fictitious time as 
a variable. 

The iteration stability of the algorithm is guaranteed by the instant calculation of the mass 
matrix M inside the iteration 100p,194919-21 which is evaluated by using the well-known Ger- 
schgorin theorem." A proper selection of the instant node damping [y affects greatly the 
convergence rate in reaching the static state in each incremental load step. Equation (5) has been 
proved to be a good selection.' Most importantly, the uniqueness of the equilibrium state obtain 
by a DR-type algorithm has been proved mathematically and found to be iteration-path 
i n d e ~ e n d e n t . ~ ~  In other words, the final static solution is not affected by the variation of instant 
M and [r during iteration. Therefore, the equilibrium solution obtained by the above proposed 
algorithm is credible. 

5. NUMERICAL EXAMPLES 

Numerical results of four typical problems are presented below to show the accuracy, stability 
and convergence rate of the proposed consistent DXDR method. The first and second examples 
are elastic-plastic bending of rectangular and circular plates. The other two, an annular plate 
subjected to a uniform tension on its outer edge and a rectangular notched plate under an axial 
tension, are plane stress problems with different orders of stress concentration. The simple J 2  flow 
theory was used throughout the analysis. Materials were assumed to be elastic-prefectly plastic, 
and E = 21 000 kg/mm2, v = 0.3, and Y = 20 kg/mm2 were used. To compare the relative 
efficiency of the consistent DXDR method with ADINA code, a well-known finite element 
software for engineering analysis, [example 41 was calculated using a Sun Sparc Station 1. All the 
other calculations were carried out on a PC DIRECT 486, DX2-66. 

Example 1. The elastic-plastic bending of a simply supported square plate subjected to a uniform 
pressure. The side length of the plate, a, is 120 mm and its thickness, h, is 2 mm. The incremental 
form of equilibrium equations can be written as 
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The relations between strains and displacements are 

where 

The results obtained for different algorithms are compared with Dinis’ solution” in Figure 1. 

Example 2. An elastic-plastic clamped circular plate in large deflection. The plate is of radius 
R = 120 mm and thickness h = 4 mm. The incremental equilibrium equations are therefore 

asN, 1 - + -(SN, - SNB) = 0 
ar r 

where 

are the membrane forces and the bending moments in the radial and circumferential directions, 
respectively. The geometrical relations between strains and displacements are 

S E ,  = S&: + Z S K , ,  = se; + ZSKB (25) 

adu awasw 1 aSw 2 

ar ar ar 2 0 ar 

where 

d&,O=-+- -+-  - 

The calculation results obtained from two algorithms are compared with Crose’s results’* in 
Figure 2. 

Example 3. An annular plate with a uniform tension on its outer edge. The inner and outer radii, 
Ri and R,, are respectively 30 and 300 mm and the plate thickness is 2 mm. In this case, the only 
equilibrium equation is 

a h ,  1 
- + -(So, - SOB) = 0 

dr r 
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Figure 1. Elastic-plastic load-deflection curves and comparison of CPU times for square plate: (a) central load-deflection 
curve, (b) comparison of CPU time 

and the geometrical relations are 

adu BU 
B E ,  =-, BE0 = - 

ar r 

A comparison between the two integration algorithms is shown in Figure 3. 

Example 4. An elastic-plastic notched rectangular plate under an in-plane tension (Figure 4(a)). 
The length a, width b, and thickness h of the plate are 200, 160 and 2mm, respectively. The 
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Figure 2. Elastic-plastic loaddeflection curves and comparison of CPU times for circular plate: (a) central load4eflection 
curve, (b) comparison of CPU time 

equilibrium equations for this problem are 

a6N, adN,, adN, adN,, -+-- -0 ,  -+-- - 0  
ax ay ay ax 

and the relations between strains and displacements are 

adu ado 
be =- aE =- ax ' ay 
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Figure 3. Elastic-plastic load-deflection curves and comparison of CPU times for annular plate: (a) loaddeflection 
curve at r = R, ,  (b) comparison of CPU time 

The results obtained from both the continuum and consistent algorithms are compared with 
ADINA calculations in Figures 4(b), (c). 

6. DISCUSSION 

To demonstrate the merits of the proposed consistent DXDR method in analysing elastic-plastic 
problems, comparisons have been made in the following manners: (a) the CPU time required 
under the same accuracy criterion, which indicates the efficiency of the method, (b) the 
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[pastieplastic notched piatell 

Type of algorithm 

(a 
Figure 4. Elastic-plastic load-deflection curves and comparison of CPU times for notched plate: (a) mesh and boundary 

conditions, (b) load-deflection curve at (X, Y) = (0, a/2), (c) comparison of CPU time 

convergence history of the disequilibrium force and kinetic energy, which shows the convergence 
rate of the algorithm, (c) the stability of the new algorithm and (d) the compatibility of the DXDR 
method with the consistent elastic-plastic operator. 

Figures l(a), (b), 2(a), (b) 3(a), (b) and 4(b), (c) clearly show that the present consistent DXDR 
method is extremely efficient in comparison with the commonly used continuum algorithm. 
A significant reduction of CPU time of 25-60 per cent can always be obtained in all the examples 
(the accuracy of the results was kept the same). This method is also more efficient than the 
relevant approach used by ADINA. In the calculation of the notched plate, the consistent DXDR 
method saved up to 40 per cent of CPU time compared with the ADINA code under the same 
accuracy criterion, see Figures 4(b) and 6. 

There is a distinct effect of the consistent algorithm on the convergence rate of the DXDR 
method. This could be observed through the norm variations of the kinetic energy and residual 
force during the DXDR iteration. Figure 5 shows the convergence history of the norms in 
calculating the circular and notched plates when the total incremental steps have been the same 
for both continuum and consistent algorithms. Obviously, the consistent algorithm provides 
higher convergence rate. Generally, there are three key factors which influence the convergence of 
the DR-type methods:' the initial vector Xo, the fictitious mass matrix M, and the critical node 
damping factor 5. In the present calculations, the initial vectors for both methods were the same. 
Thus Xo would not have any effect on the final computation time. The instant critical node 
damping factor c, however, is basically determined by the Rayleigh quotient so that only one of 
the frequencies of the fictitious transient system is damped critically and the rests are in 
under-/over-damped states. In other words, the closer the highest and lowest frequencies, the 
higher the convergence rate would be. Therefore, the high convergence rate of the consistent 
DXDR method could be due to the alternation of the frequencies. This, in turn, improves the 
evaluation of the instant mass matrix M as well. 

To show the reliable stability attainable of the new method, a comparison between the new 
algorithm and the ADINA code, with a same mesh, is made for the elastic-plastic tension of the 



2426 M. KADKHODAYAN AND L. C. ZHANG 

notched plate (Figure (4(a)). The 2-D solid element was used in ADINA calculation. The 
consistent DXDR method was always stable until the whole section of the plate became plastic. 
The ADINA calculation, however, failed because of numerical instability where the load q/ Y went 
beyond 0.825 (point A in Figure 4(b)), although very small load steps had been used (240 load 
steps after point A). The number of load steps of the consistent DXDR method were only 25 after 
the onset of plasticity. It is evident from Figure 4(b) that although the slope of the load deflection 
curve becomes very small beyond point A, the present method was still incredibly reliable in 
seeking the equilibrium state of the mechanics system. 

The compatibility between the two components of the new algorithm could be the origin of all 
the achieved merits discussed above. It means that the consistent elastic-plastic operator not only 

Elastic-plastic circular plate 
Energy norm value tor load step 8 

Number of iteration 

- Consistent .---- htinuurn 

(4 

Numbr of iteration 

I - Consistent --.-a Continuum 1 
(b) 

Figure 5. (a, b) 
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(4 
Figure 5. Convergence history of the norm of kinetic energy and residual force: (a) norm of kinetic energy of the circular 
plate, (b) norm of residual force of the circular plate, (c) norm of kinetic energy of the notched plate, (d) norm of residual 

force of the notched plate 

allows much larger incremental steps through its unconditionally stable integration scheme, but 
also enhances the convergence rate of the DXDR method by, somehow, improving the evaluation 
of the instant critical node damping factor [ and mass matrix M. 

As discussed in Section 4.2, the present consistent DXDR method is powerful for solving 
quasi-static elastic-plastic problems. For instance, although the loading paths in the elas- 
tic-plastic bending of the circular plate with large deflection (example 2) and the elastic-plastic 
tension of the notched plate (example 4) were extremely disproportional, see Figure 7, the new 
algorithm provided credible and accurate results. 
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Figure 6. Comparison between the performance of the consistent DXDR method and ADINA code: (a) plastic zone 
( q / Y  = 0+?25), (b) CPU time 

7. CONCLUSIONS 

A new promising method, the consistent DXDR method, has been proposed by combining the 
consistent return mapping technique with the DXDR algorithm. Compared with previous 
algorithms, this method allows to use much larger incremental loading steps under a given 
accuracy and offers very stable ability in seeking equilibrium states. The efficiency of computation 



ELASTIC-PLASTIC PROBLEMS 2429 

and potential of application of this method in analysing elastic-plastic problems have clearly 
been demonstrated through different types of engineering examples. It has been found that this 
new method possesses all the merits of the DXDR algorithm and the consistent return mapping 
technique, and offers an adequate convergence rate with reliable stability. 
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NOTATION 

length of a rectangular plate 
width of a rectangular plate 
diagonal damping matrix [cii] 
elastic-plastic stress-strain matrix 
flexural rigidity of a plate, Eh3/12(l - v2) 
Young’s modulus 
deviatoric strain 
the convergence indexes of the energy and residual force of the dynamic system 
defined by equation (2) 
vector of generalized external forces of a discrete system 
shear modulus 
thickness of a plate 
plastic modulus 
number of load step 
stiffness matrix of the discrete system (equation (8)) 
bulk modulus 
diagonal mass matrix of the discrete system [mi] 
bending or twisting moment 
fully plastic bending moment, 1/4 Yt2 
member force 
total node number of the discrete system 
maximum iteration number with respect to fictitious time 
unit normal vector at the contact point of the yield surface 
vector of internal forces of the discrete system (equation (1)) 
uniformly distributed transverse load 
vector of residual forces of the discrete system 
radius of a circular plate 
inner radius of an annular plate 
outer radius of an annular plate 
number of subincrement in each load step 
deviatoric stress 
displacement components in x, y and z directions, respectively 
vector of generalized solution of the discrete system 
vectors of fictitious velocity and acceleration of the discrete system, respectively 
yield stress 

z direction normal to the mid-plane of the plate 
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Y 
a( . . . )  

K 
& 

I 

shear strain 
a small increment of quantity ( . . . ) 
curvature of the plate 
normal strain 
incremental parameter, defined by equation (9b) 
Poisson’s ratio 
critical node damping factor 
normal stress 
effective stress 
shear stress component 
increment of fictitious time 
von Mises yield function 

Superscripts and subscripts 
i node i 

L indication of three perpendicular directions coincident with displacement u, v,  and w, 
respectively 

n the nth iteration step 
x, Y x and y directions, respectively 
r, 8 r and 8 directions, respectively 
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