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This paper investigates the deformation mechanism of a single-walled carbon nanotube in pure
bending. The molecular dynamics analysis and continuum mechanics characterisation were
used together to achieve a deeper understanding. It was found that at a bending angle of 24◦

the nanotube buckles locally, forming a kink in the middle of the nanotube. As the bending
angle increases, the kink progresses along the nanotube and varies its shape in both
longitudinal and circumferential directions. The kink formation can be considered as the result
of rotations of planes/surfaces about the moving and stationary hinge lines. It was also found
that the kink deformation influences the load bearing capacity of the nanotube.
C© 2006 Springer Science + Business Media, Inc.

1. Introduction
The high flexibility of single-walled carbon nanotubes
(SWNTs) has been extensively studied for most of the
generic types of loading. Reports show that SWNTs pos-
sess exceptionally large fracture resistance and can un-
dergo reversible deformation to very high strain levels.
It has been shown [1] that the buckling in bending can
facilitate the reactivity of nanotubes that will be useful in
designing schemes for molecular devices including con-
tact to surfaces and interconnects. Both experiments and
molecular dynamics simulations have shown that carbon
nanotubes (CNTs) can be bent through large angles with-
out failure.

Experimentally, the bent CNTs were observed using the
high resolution electron microscope (HREM) and atomic
force microscope (AFM) imaging techniques. Iijima et al.
[2] reported the bending of SWNTs and multi-walled nan-
otubes (MWNTs) using HREM observations in which the
deformations were introduced during handling such as
collecting them from the chamber and transferring them
to the electron microscope. Postma et al. [3] demonstrated
the buckling and bending of CNTs using the AFM tip ma-
nipulation technique, and observed that the CNTs under-
went elastic deformation. Falvo et al. [4] bent MWNTs
through large angles using the tip of an AFM without
undergoing catastrophic failure.

∗Author to whom all correspondence should be addressed.

Theoretically, the bending of CNTs has been studied by
molecular dynamics (MD) simulations [2]. At a critical
bending angle, the compressive wall in the middle of the
SWNTs displaced inwards and formed a single V-shaped
kink. It was reported that the top and bottom walls of the
nanotube could not get closer than 3.5Åeven at a very
large angle because at that distance the van der Waals
interaction between the walls became strongly repulsive.
Buckling was found to be elastic up to a bending angle
of 110◦, after which the atomic bonds broke and the
nanotube failed.

A similar analysis was conducted by Yakobson et al.
[5] and it was suggested that the behaviour of CNTs
could be studied by continuum mechanics as a cheaper
alternative to the time-consuming (MD) simulations.
A model for the bending of a SWNT was conse-
quently developed by Vodenitcharova and Zhang [6].
The response of a SWNT was studied separately for
the pre-buckling stage, the onset of local buckling,
and the kink development up to a moderate bending
angle.

The present paper combines the MD simulation
technique [7], which offers discrete displacements at
individual atoms, and continuum mechanics analysis,
which mimic the atomistic deformation to a continuum
framework, to examine the deformation mechanism

0022-2461 C© 2006 Springer Science + Business Media, Inc.
DOI: 10.1007/s10853-005-5389-7 3341



and bending capacity of a SWNT at small to moderate
bending angles.

2. Computational technique
A straight open zigzag SWNT of length L = 75.3Åand
radius R = 6.65Åwas bent by rotating its end sections
step-wisely. A classical MD method was used. The inter-
atomic interactions were described by reactive bond-
order hydrocarbon potential formulated by Brenner [8, 9],
which has been successfully used to simulate the deforma-
tion of CNTs. Mylvaganam and Zhang [7] pointed out that
in order to minimize the heat conduction problem and to
improve the computational efficiency, the Berendsen ther-
mostat should be applied to all atoms except those being
rigidly held. The simulations were carried out at 300 K
with a time step of 0.5 fs. Ten rings of atoms on each end
of the CNT were rotated out of plane in steps of 2◦. In each
step, these atoms were held rigid at their rotated positions
and the rest were relaxed to a minimum energy using the
conjugate gradient algorithm. Then, those relaxed atoms
were held at their new positions and the end atoms that
were held rigidly in the previous step were relaxed to the
minimum energy. This procedure was repeated up to a
bending angle of 64◦. The strain energy due to bending
was calculated as the difference in the total energy of the
bend tube and the initial energy of the straight tube.

3. Molecular dynamics analysis
Bending along the nanotube was smooth at small bending
angles. The tube experienced simple compression on the
inner side and tension on the outer side. Initially the strain
energy increased quadratically with the bending angle. At
around 24◦, the nanotube buckled in the middle and a kink
developed on the inner side. As a result of the release of
the compressive stress, the strain energy of the nanotube
dropped. On further bending, the kink pronounced and the
strain energy increased alomost linearly with the bending
angle as shown in Fig. 1.

The mechanism of kink formation and its development
was analysed and presented in the following sections.

Figure 2 Original (dotted line) and deformed (line with solid circles, where
the circles represent the atoms) cross sections of the SWNT at a bending
angle of ψ = 20◦ (dimensions are in Å).

It was observed that small bending angles ψ only flat-
ten the SWNT symmetrically about planes θ = 0◦ and 90◦
as the initially-circular cross sections becomes oval. This
ovalisation is uniform along the nanotube since the end
sections are left free to move in their planes. The degree
of flattening can be conventionally measured by the flat-
tening ratio [10], ζ = (R - Rc)/R, where Rc is the current
half-distance between the extreme top and bottom points
of the cross-section. For small ψ , Rc is small and hence ζ

is small. For example, at ψ = 20◦ (Fig. 2), ζ is calculated
as 0.10. ζ increases for larger bending angles.

As ψ increases, a point is reached at which the inner
wall of the SWNT suddenly buckles and moves inwards,
thus forming a kink in the middle of the nanotube (Fig. 3a).
In the MD simulation this takes place around ψ = 24◦.
The occurrence of the kink changes the deformed shape of
the cross sections along the nanotube axis, as can be seen
in Fig. 3b at a bending angle of ψ = 28◦. The end cross
sections of the nanotube rotate as rigid at an angle of ψ /2.

Figure 1 Strain energy vs. bending angle of a SWNT in pure bending.
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Figure 3 (a) Longitudinal section of the SWNT once the kink is formed.
(b) Cross-sectional view of the deformed atomic rings at a bending angle of
ψ = 28◦ (the dotted line is the original cross section and the lines with solid
circles correspond to various deformed cross sections along the SWNT axis,
where the solid circles represent the atoms). (c) Cross-sectional view (line
with solid circles, where the solid circles represent the atoms) in the middle
of the kink at ψ = 28◦, and the approximate model (dotted line) consisting
of a top flat part ABC and a bottom arc ADC having R′ = 9.75Å.

This angle of rotation decreases towards the middle of the
kink, where it becomes zero. Three different deformation
shapes of the cross section can be distinguished along the
nanotube axis. While at the ends of the beam, the cross
sections remain almost circular, midway between the ends
and the middle of the nanotube they start flattening, though
remaining planar. At a distance of 3.8R from the middle of
the kink the flattening ratio ζ is around 0.04, at a distance
of 3.5R it is about 0.098, and at a distance of R, ζ = 0.24.
At a distance from the middle of the kink shorter than R,
the top parts of the cross sections flatten more than the
bottom parts, they become flat and even concave; however
the cross sections still remain almost planar.

A closer look at the longitudinal section of the SWNT
at ψ = 28◦ reveals that the kink starts at a distance

Figure 4 Schematic representation of the kink under bending.

l = R from the middle of the nanotube. In the middle
of the kink the flattening ratio is ζ = 0.355 and the drop
of the cross section δ = 2(R - Rc) (Fig. 3b) appears to
be around 0.89R. It can also be seen that the cross sec-
tions at different locations along the kink have almost the
same circumferential curvature in their bottom arc parts,
but their sides bulge more towards the middle of the kink.
Moreover, it can be concluded by observation that dur-
ing kinking the perimeter of the cross sections does not
change; the cross sections only bend. Similar is the con-
clusion for the kinking of the SWNT in the longitudinal
direction, i.e., the length of the SWNT remains almost
unchanged. Therefore the kinking phenomenon in pure
bending is in-extensional.

The shape of the deformed cross section of the kink can
be presented in a simplified form, consisting of a straight
line AC on the top of the kink and a circular arc of radius
R′ at the bottom (Fig. 3c); obviously AC and R′ vary
along the kink. Apparently the length of AC decreases
almost linearly from the middle of the kink towards its
ends, where it becomes zero. Points A and C can be seen
as positioned on a stationary hinge line AC, as well as
on hinge lines AE, CE, AF and CF (Fig. 4), moving as
ψ increases. From the MD results the parameters of the
idealised cross sections were estimated to be yB = DB =
7.34Å, δ = 6.03Å, AC = 17.67Å, R′ = 9.75Åand ϕ′

0 =
101◦ (see Fig. 3c for the definition of ϕ′

0).
The simplified shape of the kink consists of top trian-

gular plates ABCF and ABCE, and bottom circular parts
ADCGF and ADCHE (Fig. 4). This model has been ap-
plied to the present SWNT with the Poisson’s ratio µ =
0.19, Young modulus E = 4.88 TPa and thickness of the
nanotube wall t = 0.617Å[11]. It follows that the onset
of buckling occurs at ψ = 23.3◦, which is practically the
same angle at kinking provided by the MD simulations
presented above. At ψ = 28◦, the mechanics model leads
to l = R, yB = DB = 7.22Å, δ = 6.099Å, AC = 17.35Å, R′
= 8.82Åand ϕ′

0 = 100.5◦, i.e., virtually the same results
as the MD findings. It can therefore be concluded that
the Vodenitcharova-Zhang’s continuum model [6] gives
reasonable prediction for small to medium angles.

4. Mechanics analysis
The bending moments in the walls of the kink and the
moment-bearing capacity of the SWNT, considered as
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continuum, can be estimated for a given angle ψ from
the displacements of the atoms. Let the coordinates of the
atoms are measured in a coordinate system XYZ set in
the middle cross section of the SWNT (Figs. 5a and b),
and let X0, Y0 and Z0 be the original coordinates before
deformation and X′, Y′ and Z′ be the coordinates after
deformation. The radius-vector of an atom is the sum of
its original radius vector, its displacement as a rigid body,
and its displacement vector u + v + w due to straining
of the SWNT, where u, v and w are the displacements
in the longitudinal, circumferential and radial direction,
respectively. One can avoid considering the rigid body
translation and rotation by setting a new coordinate system
X′ Y′Z′ at the bottom point M′

b of a particular atomic ring,
and rotate it at an angle γ , in order to rest in the plane
of the deformed cross section (Figs. 5a and b). Then,
the deformation of the atom is expressed in terms of v
and w only, measured from the original location of the
undeformed circle in the coordinate system X′Y′Z′. The
geometrical relations between the magnitudes of the two
displacements, i.e., w and v, and the current coordinates
of the atom are as follows (see Fig. 5b)

X ′ = X0 − w cos θ − v sin θ

Y ′ = Y0 − w sin θ + v cos θ.
(1)

Solving for w and v, Equation 1 yields

w = −(Y ′ − Y0) sin θ − (X ′ − X0) cos θ

v = (Y ′ − Y0) cos θ − (X ′ − X0) sin θ.
(2)

Knowing w and v, one can estimate the cross-sectional
circumferential curvature kθθ and the bending moments
in the circumferential direction Mθθ of the SWNT, as
well as the curvature kzz and bending moment Mzz in the
longitudinal direction [10]

kθθ = − 1

R2

(
∂2w

∂θ2
+ w

)
,

Mθθ = −D [µkzz + kθθ ] (3)

kzz = −∂2w

∂z2

Mzz = −D [kzz + µkθθ ] ,

where D = Et3

12(1−µ2) is the bending stiffness of the con-
tinuum SWNT. The terms containing µ have a negligible
contribution to the bending moments in Equation 3, so
that the graphs of Mθθ and Mzz resemble those of kθθ and
kzz, respectively; the difference is a multiplying factor, i.e.,
the bending stiffness D.

The formulae in Equation 1–3 can be applied to the
displacements of the atoms obtained by MD. Figs. 6a
and b show the distribution of kθθ and Mθθ at two spe-
cific locations along the kink, at a given bending an-
gle ψ = 28◦. The kink starts at a distance of R from
the middle of the kink, where the cross section is oval

Figure 5 (a) Coordinate systems for the calculation of the displacements in
a SWNT in bending; (b) Section A-A of (a) and the original circular cross
section (dotted line).

(Fig. 6a), and bends more towards the middle of the kink
as both the circumferential curvature and the circumfer-
ential bending moment increase. For example, at a dis-
tance of 0.64R from the middle of the kink, where the
top part of the cross section is almost flat, kθθ and Mθθ

are 0.93×106 (mm−1) and - 0.92×10−10 (N mm/mm),
respectively, at the top; 0.8 × 106 (mm−1) and
- 0.79 × 10−10 (N mm/mm), respectively, at the bottom,
and −1.04 × 106 (mm−1) and 1.03 × 10−10 (N mm/mm),
respectively, in the sides. The most flattened cross section
is in the middle of the kink (Fig. 6b) where the top side of
the kink even slightly displaces inwards. The longitudinal
curvature kzz is almost zero at all sections along the kink.

The curvatures and the bending moments were com-
pared with the results from the Vodenitcharova-Zhang
model [6] and it was found that in the middle of the
kink Mθθ is 1.49 × 10−10 (N mm/mm) in the top wall
and 1.52 × 10−10 (N mm/mm) in the side walls. Ob-
viously, these values are close to the results from MD
(Fig. 6b). However, the Vodenitcharova-Zhang model
underestimates Mθθ at the bottom wall, where it is
0.4 × 10−10 (N mm/mm) in the middle of the kink. Nev-
ertheless, the contribution of such moment to the energy
of the SWNT is small.
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Figure 6 (a) Deformed cross section (line with solid circles, where the
circles represent the atoms) and the diagram of kθθ /Mθθ (solid line) at a
distance of R from the middle of the kink, ψ = 28◦. The figures outside
the brackets are the values of kθθ (in mm−1) and the figures in the brackets
are the values of Mθθ (in N mm/mm); the cross-sectional dimensions are
in Å; (b) Deformed cross section (line with solid circles, where the circles
represent the atoms) and the diagram of kθθ /Mθθ (solid line) in the middle
of the kink at ψ = 28◦. The figures outside the brackets are the values of
kθθ (in mm−1) and the figures in the brackets are the values of Mθθ (in N
mm/mm). The cross-sectional dimensions are in Å.

Similar considerations can be given to the kink devel-
opment at a bending angle of ψ = 64◦. The length of
the kink l can be determined from the longitudinal view
(Fig. 7a) and appears to be around 3R. At the ends of the
kink, the SWNT is inclined at ψ = 32◦. Along the kink,
within a length of 2l from the middle of the kink, the
bottom line at X′ = 0 resembles an arc with a radius of
65.45Å. The top of the kink consists of two zones. Zone
1 contains two almost triangular areas between the kink’s
ends and sections at a distance of 1.69R from the mid-
dle of the kink. Zone 2 is between these sections and the
middle of the kink, where the longitudinal lines in the top
part of the kink are curvilinear. The line in Zone 2 having
X′ = 0 is almost circular at Z′= 0 and has a radius R′ =
20.35 Å; so that its longitudinal curvature is kzz = −1/R′=
− 4.91×105 mm−1. The bottom of the kink in Zone 2 is
slightly curved and the fibre X′ = 0 resembles a circular
arc having R′ = 65.45Å; therefore its longitudinal curva-
ture kzz is −1/R′ = −1.53×105 mm−1.

It is observable that the shape of the deformed cross
sections of the kink at large angles differs from those at
small angles, (Fig. 7b). Even at the ends of the SWNT,
the cross section is no longer circular but oval having =
0.094. At a distance of 3R from the middle of the kink,
the cross section is also oval experiencing a drop from the

Figure 7 (a) Longitudinal section of the SWNT showing the kink formed
at ψ = 64◦; (b) Cross-sectional view A-A of (a) of the deformed atomic
rings at a bending angle of ψ = 64◦, where the solid circles represent the
atoms.

original circular shape δ = 4.08Å; the minimum distance
between the top wall and the bottom wall is 9.24Åand ζ

is 0.306.
Towards the middle of the kink, the cross section be-

comes more deformed. At a distance of 1.69R from the
middle of the kink, the cross section is similar to the one
at the middle of the kink. The drop in cross section, δ, is
8.74Å, the minimum distance between the top and bot-
tom walls is 4.57Å, and the flattening ratio ζ is 0.657.
The curvatures and the bending moments increase ac-
cordingly; at the top of the cross section kθθ and Mθθ are
1.37×106 (mm−1) and −1.36×10−10 (N mm/mm), re-
spectively; at the bottom of the cross section 1.183×106

(mm−1) and −1.172 × 10−10 (N mm/mm), respectively;
and in the sides −2.285×106 (mm−1) and 2.264×10−10

(N mm/mm), respectively. Obviously the sides bulge sig-
nificantly resembling a circular arc with a radius of 2.64Å.

At the middle of the kink, the cross section of the SWNT
becomes almost fully collapsed. Both the top and bottom
parts flatten, even bend inwards; the distance between
them was measured to be 3.21Å, which is close to the
equilibrium distance between two graphite sheets of 3.4Å.
It was also calculated that δ = 10.1Åand ζ = 0.76. The
circumferential curvatures and bending moments were
calculated as well shown in Figs. 8a and b, where the
results at ψ = 28◦ are also given for comparison (note
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Figure 8 (a) Circumferential curvature, kθθ , at various points of the cross
section at the end of the kink (solid lines) and in the middle of the kink
(dotted lines), vs. the total bending angle ψ : (1) kθθ at the top of the cross
section in the middle of the kink, (2) kθθ at the bottom of the cross section
in the middle of the kink, (3) kθθ at the sides of the cross section in the
middle of the kink, (4) kθθ at the top of the cross section at the end of the
kink, (5) kθθ at the bottom of the cross section at the end of the kink, (6) kθθ

at the sides of the cross section at the end of the kink; (b) Circumferential
moment, Mθθ , at various points of the cross section at the end of the kink
(solid lines) and in the middle of the kink (dotted lines), vs. the total bending
angleψ : (1) Mθθ at the top of the cross section in the middle of the kink, (2)
Mθθ at the bottom of the cross section in the middle of the kink, (3) Mθθ at
the sides of the cross section in the middle of the kink, (4) Mθθ at the top of
the cross section at the end of the kink, (5) Mθθ at the bottom of the cross
section at the end of the kink, (6) Mθθ at the sides of the cross section at the
end of the kink.

that the length of the kink is l = R for ψ = 28◦ and l =
3R for ψ = 64◦). It is evident that kθθ and Mθθ at the top
and bottom parts of the cross sections do not vary much
with the bending angle, ψ . However, the sides of the nan-

otube bulge outwards significantly and have an almost
constant circumferential curvature kθθ of −2.78 × 106

(mm−1), which corresponds to a circular arc of a radius
2.33Å. When applied to this bending angle (ψ = 64◦),
the Vodenitcharova-Zhang model provides close results:
Mθθ = 1.49 × 10−10 (N mm/mm) in the top wall and
2.13 × 10−10 (N mm/mm) in the sides. A similar note can
be made as in the case of = 28◦, that the Vodenitcharova-
Zhang model underestimates Mθθ at the bottom wall,
where it is 0.7×10−10 (N mm/mm). The longitudinal cur-
vatures are small; line X′ = 0 has kzz = 4.91 × 105 mm−1 in
the top wall and kzz = 1.53 × 105 mm−1 in the bottom wall.

5. Bending capacity of the SWNT in pure
bending

Rotating the ends of the SWNT will induce pure bending
since each cross section will only turn about an axis par-
allel to the X-axis and passing through the centroid of the
cross section. The other internal forces will be zero. The
magnitude of the bending moment M is calculated from
the strain energy graph (Fig. 1) as (∂U/∂ψ).

The variation of M with the bending angle ψ is plotted
in Fig. 9; M is almost linear in the pre-buckling zone, has
a drop at the point of local buckling and is almost constant
in the post-buckling zone. Obviously, the kink formation
decreases the bending capacity of the nanotube.

6. Conclusions
This paper examines in detail the deformation mechanism
of a SWNT, using MD analysis in conjunction with the
continuum mechanics. It was found that the SWNT buck-
les locally at a critical bending angle, and consequently
kinks upon further loading. The phenomenon of kinking
is associated with the formation of moving hinge lines
located in the side walls of the kink, and one stationary
hinge line located in the top wall in the middle of the
kink. The bending capacity of the SWNT has also been
estimated for the pre-buckling and post-buckling regimes.
It was found that at small angles the simplified mechanics
model [6] predicts well the point of local buckling, the
kink parameters, the bending moments in the walls of the

Figure 9 Bending moment M vs. bending angle.
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SWNT and the bending moment M applied at the end
sections of the beam.
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