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Abstract--This paper proposes modelling methods of the elastic modulus of grinding wheels and the interface 
forces over the contact arc between a wheel and a workpiece during grinding operation. It reveals that, for 
a class of grinding wheels with same types of grain and bond material, the elastic modulus is only a function 
of dimensionless temperature and a governing non-dimensional variable; interface forces over the grinding 
contact arc deviate far from the Hertzian profile. The paper produces some useful conclusions for the 
improvement of grinding technology. 

1. INTRODUCTION 

IT HAS been claimed again and again by many researchers that interference conditions 
between a grinding wheel and a workpiece influences very much the surface integrity 
of the ground components [1-11]. The interference conditions can be characterized by 
the contact length and the distributions of interface forces [5]. They are essential for 
the purpose of getting an accurate knowledge of quantitative relationships for the 
selection of optimal grinding conditions and for the adaptive control or on-line optimiz- 
ation that will increase the productivity of the process by about 20-30%. For example, 
one direct reason for this is that elastic deflection (as well as thermal expansion) causes 
the depths of cut to be less than the nominal. 

Investigations into the elastic deformation have been performed following experimen- 
tal and theoretical as well as microscopic and macroscopic approaches. Microscopically, 
an active grain that removes the chips is deflected because of the forces exerted on it 
during grinding; macroscopically, the wheel might be considered as a thick circular disc 
pressed against a curved surface of a workpiece. However, it is just a very rough 
qualitative picture for understanding a grinding process. It is the fact that the mechanism 
of elastic deflections, their magnitude and the parameters that influence them are 
largely a matter of speculation. 

Researches before 1980 in this field were well reviewed by Malkin [12] and Saini [6] 
individually. They concluded that observations concerning the influence of various 
parameters on the magnitude of contact deflections were diverse from and conflicting 
with each other and produced a paradox. Specifically, we can summarize them into the 
following questions: 

(1) What are the effects of wheel grade, grain size and grain type [9, 13-17]? Some 
of these researchers claimed significant effects from these factors but some did not 
agree with these. 

(2) Although the contact length has been measured by means of a thermocouple 
[10, 18-20], art explosive device [9, 21] and various other means, "what is the correlation 
of contact length with dominating grinding factors?" is still an open question. Experimen- 
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tal observations were very different from theoretical ones [10, 18] (sometimes it was 
found to be 1 .5-2  times the geometrical length but sometimes 1-10 times). 

(3) How does the variation of  interface temperature influence contact arc? 

(4) What are the forms of  interface force distributions? 

(5) What is the dynamic effect on contact length? 

(6) As a result, what is the importance of  the accuracy of  contact length and the real 
shape of  the interface to residual stress and temperature distributions? 

Many researchers, e.g. Saini [6, 7], adopted a microscopic approach to investigate 
the deflection effect. They tried to understand exactly the contact deformation of the 
grinding wheel by studying the so-called local elastic deflection of a single grain or a 
small group of grains. There is no doubt that the microscopic approach is useful but 
how to get the required information from such a method is tricky. Conclusions obtained 
so far with great efforts are not attractive, and further investigation will be very difficult. 

It is important to pay attention to constructing a link between microscopic research 
and the application of continuum mechanics. A simple method is to ascribe dominating 
microscopic parameters to some macroscopic factors. It is reasonable to assume, for 
instance, that the elastic constants of a grinding wheel are functions of temperature, 
grain size, type of grain and type of bond material; yield stress of workpiece material 
is a function of temperature. The forms of these functions could be determined by 
experimental observations. Under such hypotheses, one could expect that results and 
conclusions deduced from a continuum theory would comprehensively extrapolate to a 
real case. Several researchers (e.g. Soneys and Wang [22]) did try to solve this problem 
by continuum mechanics. Unfortunately, they did not very carefully take into account 
micro-effects and assumed in advance that the pressure distribution over the contact 
arc was Hertzian. It violated the real circumstance. Although only few experimental 
results [5] were available due to the difficulties of measuring pressure over the contact 
bite, they clearly showed that real pressure distribution significantly deviated from 
Hertzian. 

It is the purpose of our research series to discuss the above questions. In this part, 
we deal with the modelling of the modulus of elasticity of a grinding wheel and the 
modelling of deformation of a grinding process. It is evident that elastic modulus is a 
very important parameter in deformation analysis and should be discussed first. 

2. MACROSCOPIC MODELLING OF THE ELASTIC MODULUS OF GRINDING WHEELS 

2.1. Analysis 

As has long been realized, the macroscopically measured elastic modulus of a grinding 
wheel, E, is a physically well defined wheel criterion because it reflects the effects of 
most microscopic components of the wheel and influences significantly the interface 
condition between the wheel and the surface under grinding. On the other hand, it 
could meet the needs of both the manufacturers who should indicate the behaviour of 
their products and the users who should select a proper wheel for their grinding 
operations. 

People have found that the elastic modulus of a 
complex function of numerous factors: temperature -r; 
hg; concentration c, grain grade Gg; total apparent 
volume of bond material Vb; volume of pores Vp; type 
tb; and the mean diameter of grains d, that is: 

grinding wheel is an extremely 
specific weight p; hardness grade 
volume V; volume of grain Vg; 
of grain tg; type of bond material 

E = f ( r ,  p,c ,d ,  hg, Gg, tg, tb, V, Vg, Vb, Vp). 

It seems to be rather difficult to reveal clearly the dependence of E upon these factors. 
Typical investigations into this problem are those published by Peters et al. [23] and 
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Umino et al. [24-30]. The former studied the relations between E and hg, while the 
latter discussed the variation of E with c, d, hg, tg, V, V 8, Vb and Vp in a series of 
seven papers and expressed their results by hundreds of curves. 

However, it is possible to obtain the nature of E clearly and to simplify the results. 
We can easily see that hardness grade hg is determined by "r, d, tg, tb, Vg and Vb; 
concentration c relates to d and Vg; Vp = V - (Vg + Vb); and Gg is equivalent to d. 
Hence, hg, c, l/p and Gg are not governing parameters. We could then express E as: 

E = f(,r, p,d, tg, tb, V, Vg, lib). 

Furthermore, for a class of grinding wheels with specific types of grain and bond 
material, we have: 

E = f(~, 0, d, G ,  vb) 

under a given total apparent volume V. As is evident, the total number of governing 
parameters, n, is five in the present case. The dimensions of the parameters, for 
definition in the class MLT, are expressed by the following relations: 

[E l = F L  -2, [ ' r ]=0,  [ d l = L ,  [ o I = F L  -3, [ V g l = L  3 and [ l l b ] = L  3. 

It is easy to see that the first three governing parameters, "r, d and p, have independent 
dimensions so that the number of independent governing parameters, k, is three. 
According to the well-known H-theorem, the number of independent dimensionless 
parameters in Lhe present case is n - k = 2, and dimensional analysis gives (see, for 
example, Sedov [31]): 

E = ( I ) ( X l ,  X 2 )  , X 1 = (Vg)3(Vb)(D) -3,2, X 2 = "i" ( 1 )  

where 

E v~ v~ d 
- Vg Vb and D - dp' = V '  : V V 1/3 " 

Consequently, according to the above equation, in coordinates E - X1, all the exper- 
imental points obtained under the same dimensionless temperature, ÷, should lie on a 
single curve, if, ideally, there were not any errors in measurement. 

2.2. Illustration and discussion 
As Fig. 1 shows, the above non-dimensional formula (1) is extremely well confirmed. 

All of the experimental points in Fig. 1 were from the results published by Umino et al. 
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[26-28], where they expressed these experimental results by 29 individual curves. In 
obtaining Fig. 1, we have applied the relation of: 

p = pgVg + pbVb 

where pg = 39 (gf cm -3) is the specific weight of the grain and Pb = 24 (gf cm -3) is 
that of the bond material. The grinding wheels used here were WA#46V,  WA#60V,  
W A # 8 0 V  and WA#120V.  

Equation (1) is a general relation between non-dimensional Young's modulus E and 
governing factors Vg, Vb and D. For different measuring temperatures, different types 
of grains or different types of bond materials, we obtain different curves. The signifi- 
cance of equation (1) lies in that it reveals the nature of E and that it can hugely 
reduce experimental work and make theoretical analysis convenient. For example, 
suppose that we have constructed a curve like that in Fig. 1 using a few experimental 
data points in the interval X1 E [X~ a), X~b)], then without carrying out any further 
experiments, we can easily get other E values for those grinding wheels with X~ E 
[X~ a), x~lb)]. This curve could also be used to check the correctness and accuracy of 
the experimental results of grinding wheels with same types of grain and bond material. 
Those distributed closer to the curve are better; those farther away, worse, or even 
wrong. 

Figure 2 is another illustration. If we add the experimental results from another 
source [32] into Fig. 1, we can see that they also distribute closely to the single 
curve, although their wheels were made by different manufacturers. Their wheels were 
WA#30V, WA#60V, WA#100V and WA#220V. 

The non-dimensional elastic modulus E implies certain physical meanings. E/p relates 
to the square of the longitudinal wave speed, v, of the material (under the condition 
of isotropy). Obviously, grain diameter d relates to the anisotropy of the wheel and in 
turn, influences v. On the other hand, E/p is also a measure of specific stiffness which 
appears in the formula for the bending of beams under their own weight. Fortunately, 
people are using the methods of sonic test and bending test (e.g. [23,26-28]) to 
determine modulus of elasticity, although the latter does not presently involve p. 

The method of the bending test produces the so-called static modulus, Estat , and the 
method of sonic test gives a dynamic modulus, Edy,. Comparisons [23] showed that 
these two methods yielded almost the same values of elastic modulus for a specific 
wheel. Therefore, we shall not distinguish Edyn and Estat in our analysis. 

3. A THEORETICAL MODEL TO DETERMINE NORMAL AND TANGENTIAL FORCES 

3.1. Mechanics of grain cutting 
There have been many models proposed over the last decade to describe grain 

cutting. In these models, three separate forms of grain action are distinguished: rubbing; 
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FI6.3. The cutting process of a mean grain. 

ploughing; and cutting. It is very difficult to apply these models to a real abrasive 
process, since we need in advance to generate an extremely detailed description of the 
grain's topograplhy in order to determine how much of the grain cuts the workpiece; 
how much ploughs it and how much rubs it. From the viewpoint of the authors, a 
simple approach is to propose a model derived from the comprehensive effect of all 
grains. 

The cutting process of a grain should actually be investigated by a three-dimensional 
model. For the ,;ake of convenience, however, we neglect its transverse effect (in the 
Z-direction) andL focus our attention on the X-Y  plane for the time being. During 
cutting, a grain undergoes a horizontal force, fn, and vertical force, fv- The magnitudes 
of these and the ratio between them mainly depend on cutting speed v and rake angle 
a of the grain (see Fig. 3); fh leads to severe plastic shear deformation of the workpiece 
along its grinding direction and forms a chip; fv is necessary to keep the depth of cut 
of the grain, witlh small ot producing small fv. Usually, the vertical plastic deformation 
of the workpeice is much smaller than shear deformation. On the other hand, fh and 
fv will yield local elastic deformation of the grain and that of the workpiece surface. 

People may think that since the shapes of grains are irregular and the depths of grain 
cut are different from each other, the distributions of interface forces, normal pressure 
p(x) and shear force q(x), may be very irregular and even discontinuous (see, for 
example, the sawtooth curve in Fig. 4). However, we would argue that the wheel and 
the workpiece are in continuous contact. To a great extent (except randomly distributed 
active grains), inactive grains, bond material and crammed chips can also be in contact 
with the workpiece and build up contact forces. Actually and macroscopically, this type 
of grinding force cannot be distinguished from those of active grains, because they 
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FIG. 4. Smooth and unsmoothed interface forces. 
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always come together in the chip formation process. Therefore, we can say that p(x) 
and q(x) can distribute continuously and we can replace the sawtooth curve by a smooth 
one (Fig. 4). 

3.2. A theoretical model to determine interface forces 
For any steady grinding process with workspeed Vw and depth of wheel cut h, suppose 

that we observe the movement of the interface by standing on the workpiece. We will 
then see that the interface boundary shifts forward with Vw but keeps its shape 
unchanged. Hence (see Fig. 5), let the interface be fo(x) at instant Fo, then at next 
instant F = Fo + t, it shifts to f2(x). If we remove the grinding wheel at instant F, the 
elastic deformation of the workpiece recovers and we get the instant grinding boundary, 
f l (x) ,  after unloading. 

Based on the above statement and the discussion on the mechanics of grain cutting 
in section 3.1, we divide the deformation of the workpiece into two parts (in time 
interval [Fo, F]): 

(a) The removed part (the part between curves fo(x) and fl(x) in Fig. 5): this part 
of material was cut by active grains, all plastic deformation concentrated in this part; 
and 

(b) The remaining part (the part between curves fl (x) and f2 (x) in Fig. 5): this part 
of the material remained owing to the elastic deformation of the workpiece under 
interface forces. 

With the aid of this model, we can calculate the interface forces p(x) and q(x) by 
contact mechanics. For a given grinding operation, f~(x) could be obtained from 
experimental measurement. This determines the initial shape of the workpiece. The 
grinding wheel is initially cylindrical, it is pushed into contact with the workpiece under 
a rigid displacement, 8, which makes x = Ci become the first contact point such that 
we get the nominal depth of cut of the wheel. The term q(x) is simply determined by 
Ixp(x) where Ix is calculated from experimental results. 

3.3. Solution and algorithm 
First, we focus on a conventional grinding problem so that the length of 

wheel-workpiece interface is much smaller than both the dimension of the wheel and 
that of the workpiece. The deformation of wheel or workpiece surface can then be 
approximated by a half plane (plane strain) which is subjected to arbitrarily distributed 
boundary stresses, p(x) and q(x) (see Fig. 6). This problem could conveniently be 
solved by the well-known complex function method. Details are shown in the Appendix. 
Figure 7 is the flow chart of the algorithm for computing p(x) from equations 
(A. 1)-(A.4). 

Ci Cl+fV2~) / ~ORKPIECc+EVWt 

FIG. 5. Theoretical model of  the interface state of  a grinding process. 
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FIG. 6. A half plane subjected to arbitrarily distributed forces. 

3.4. Result and discussion 

As an example, we consider a plough grinding process as investigated experimentally 
by Okamura et al. [5]. The grinding wheel was WA80L9V, its modulus of elasticity is 
4 x 104 MPa, Poisson's ratio is 0.2, and diameter is 400 mm. The workpiece is steel 
SK3, with modulus of elasticity 1.88 × 105 MPa, and Poisson's ratio 0.3. Nominal 
depth of the wheel cut was 3.8131 p.m. 

The comparison of theoretical and experimental pressure distributions is shown in 
Fig. 8. The difference between the two curves is from the approximation of the 
theoretical model, where we neglected the vertical plastic deformation and ignored the 
temperature effect. 

It is evident that the pressure distribution deviates from Hertzian significantly, 
because the initial shape of the workpiece surface in steady grinding is not flat. It is 
different from the contact process of a half plane punched by a long circular cylinder. 
Hence, to investigate the mechanical residual stresses in ground components, we had 
better take such a pressure profile as a moving load rather than Hertzian, because it 
is too rough for simulating a real grinding process. It is quite interesting to notice, like 
in the case of thin strip rolling, that the shape of the pressure curve is quite similar to 
that of the temperature curve. The "centre of gravity" of pressure is approximately 
located at the middle between the inlet contact point and the origin, or the geometrical 
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FIG. 7. The flow chart. 
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Fl~. 8. Pressure distributions (experimental results were from Ref. [5]). 
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exit contact point. Since the magnitude of p(x) in the region [0, Xo] is small, it is 
reasonable to think that the resultant forces are applied at the point of x = XJ2. It is 
useful to grinding engineers. The profile of the interface shear stress, q(x), is similar 
to p(x) because we applied the relation q(x) = Ixp(x), where tx was determined by 
experimental data. 

Theoretical contact length, l,, is about 1.42 times longer than the geometrical length, 
lg, which is calculated by neglecting elastic deformation of the wheel and workpiece. 
Theoretical length is smaller than the experimental, le, but only by a little (le ~ 1.098/t). 
This indicates that the factors which we ignored in our theoretical model have no 
significant effect on the total contact length. 

The pressure distribution relates to the variation of chip thickness cut by an individual 
grain. The variation of chip thickness has been discussed by many researchers (e.g. 
Hillier [33] and Lindsay [34]). Small chip thickness corresponds to small pressure value. 
The pressure profile suggests that a lot of rubbing during grinding may occur in the 
region [0, Xo]. This could help in reducing the roughness of the ground surface in 
certain situations. 

Deformation of wheel and workpiece makes the real depth of wheel cut, h, smaller 
than the nominal depth, hn, which, in turn, increases the difficulty of controlling the 
accuracy of the finishing grind. In the present case, h = 0.938h,. 

4. CONCLUSIONS 

The paper deals with two important problems in grinding operations. It first finds 
that the non-dimensional elastic modulus of any given class of grinding wheels is a 
function of dimensionless temperature ÷ and a governing non-dimensional variable X~. 
This revelation has significant meaning to the development of grinding technology. It 
can reduce a lot of experimental work, check the correctness and accuracy of experimen- 
tal results and make theoretical analyses very convenient. 

In addition, the paper proposes a simple but realistic theoretical model for calculating 
interface forces. It shows that actual pressure profiles over the grinding bite greatly 
deviates from Hertzian pressure. To evaluate mechanical residual stresses, one should 
apply the fine pressure distribution calculated by the present model. Resultant interface 
forces are found to exert approximately at the middle of the geometrical contact length 
(x = -lg/2), which is convenient for grinding engineers to apply in practice. 

Further work is needed for the temperature effect on the elastic modulus of the 
grinding wheels and for a refined model of interface forces by considering vertical 
plastic deformation. 
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and 

where 
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l l l ÷ ~  N-IL ~ 

2 l-tT IT t+tT N-I T T N 

WORKPIECE 

Fro. A. I .  Pairs of contact nodes on interfaces. 

APPENDIX 

Complex function method in the theory of elasticity [35] gives: 

2G <~) (u (~) + iv (k>) = (3 - 4v(k))~(z)  + ~ ( ~ )  + (z  - z)  ~ ' ( z )  

tr(k) + tr(yk) : 2{I I ' (z )  + f l ' ( z )}  

(A.la) 

( A . l b )  

a (k )_  iv(k)=I~ ' (z)  - I I ' ( 2 )  + (z - 2) 12"(z) y x y  (A . l c )  

E( k ) 
G (k) z = x + i y ,  e = x - i y ,  i = \ , - 1  

2(1 + 1. , (k) )  ' 

superscript k = 1 or 2 indicates wheel or workpiece, respectively, u and v are displacement components in 
the x and y directions, trx, try and rxy are stress components.  Stress boundary condition is 

t r~k) - -&~k)=--p(x)[ l+i lx]  on y = 0 .  

Hence, 

1 f+=p(t) + iq(t) -~t + i (~o p(t) dt 
[~'(z) = - ~ i  )_= -t--- z d t= 2~-~ J~, --t- z " (A.2a) 

If we divide the grinding contact arc into n small elements (Fig. A.1) and assume that p(x)  is linearly 
distributed over an element j {x  E [x i, xj+l] ( j  = 1, ..., n)} (Fig. A.2),  we get an explicit expression for 
ll'(z) in [xj, xj+l]: 

- i ~ + i  f 
(A.2b) 

x 

FIG. A.2. Piecewise linear pressure. 
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where 

cl _ P / + l - P j  c2 -p i x /+~  - P / + l x J  L =x/+~ - x /  
L L ' 

and subscript j stands for element j. 
The normal displacement at node point l is then determined by: 

v~k, c~k) ~_ r~<k~ ( l =  1, N) (A.3) = ~tm P,, - ~lm q,,,, . . ' ,  

where t°(k) a y)(k) ~Jm an~ ~ m  are deformation influence matrices which are derived from equations (A.1) and (A.2).  
Repeated subscripts indicate a summation from 1 to N, N being the total node number. Compatibility 
condition of normal displacements of wheel and workpiece at po in t / ( /=1  . . . . .  N) leads to the equations for 
determining pressure p ( x ) ,  that is: 

f /~(1)  4- p ( 2 )  -t- (1) (2) 
Dz,, )}Pro = H1, t~ ,m  ~tm -- P'(Dtm + (1=1 . . . . .  N) (A.4)  

where Ht is the difference between F2(x ) and Fl(X) at node l, Fk(X) = h - f k (X)  (k = 1, 2), and -+ 
corresponds to the rotating direction of the grinding wheel. 


