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Abstract

In this paper a total of 16 variables, which are most influential on surface roughness in grinding, are considered. The variables
are classified into three groups depending on their significance and effect on surface roughness. A three-layer fuzzy model is used
to correlate these variables to surface roughness using the fuzzy rules generated based on experimental observations and
recommendations from wheel manufacturers. Membership functions, fuzzy rule bases, and a worked example are presented in
detail to demonstrate the strength of fuzzy logic in modeling such a complex system in an efficient manner. © 1999 Elsevier
Science S.A. All rights reserved.
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1. Introduction

Grinding is a surface finishing process, and surface
roughness is one of the most important factors in
assessing the quality of a ground component. However,
there is no comprehensive model that can predict
roughness over a wide range of operating conditions;
and after many decades of research, this is an area that
relies on the experience and skills of machine operators.
The difficulty stems from the fact that many variables
are affecting the process. These include: work material
properties, grinding wheel composition, dressing condi-
tions, operation parameters, coolant application and
properties, and machine vibration. Many of these vari-
ables are non-linear, interdependent, or difficult to
quantify with crisp numeric precision. Therefore, physi-
cal models are not feasible, and experimental investiga-
tions can be very exhaustive and with limited
applicability.

An added difficulty is the fact that there are many
ways to measure and characterize a surface [1]. There is
no single number that can be used to fully describe

surface topography. Therefore, for the present work, it
is assumed that surface roughness is characterized by
the center-line-average (CLA) of a line profile sampled
using a stylus moving parallel to the grinding wheel’s
axis, notwithstanding the resulting ambiguity and loss
of information.

Theoretical models for predicting ‘ideal’ surface
roughness along the longitudinal and transverse direc-
tions have been reviewed by Malkin [2]. These ideal
models assume an analogy with the milling process and
show that surface roughness depends on table speed,
wheel speed, grit spacing, grit radius of curvature,
wheel diameter, and cross-feed overlay; and is indepen-
dent of depth of cut or coolant application. However,
these models predict erroneous values that are one to
three orders of magnitude smaller than the ‘real’ surface
roughness. Tawfik [3] treated surface grinding as a
mixture of micro-milling and wear processes, and
showed that roughness also depends the on depth of cut
and work material hardness. The model is accurate but
requires some experimental calibration.

Lindsay [4] showed experimentally that roughness
depends on the material removal rate, the undeformed
chip thickness, and the diamond dressing in-feed and
lead. Yet, Malkin [2] pointed out that dressing affects

* Corresponding author.
E-mail address: zhang@nemo.mech.eng.usyd.edu.au (L.C. Zhang)

0924-0136/99/$ - see front matter © 1999 Elsevier Science S.A. All rights reserved.

PII: S 0 9 2 4 - 0 1 3 6 ( 9 9 ) 0 0 0 2 2 - 9



Y.M. Ali, L.C. Zhang / Journal of Materials Processing Technology 89–90 (1999) 561–568562

Fig. 1. Definition of a membership function, Eqs. (1)–(3).

Fig. 3. Membership functions for primary variables.

roughness only when a fresh wheel or continuous dress-
ing is applied. Once a wheel reaches ‘steady state’
surface topography, work roughness becomes indepen-
dent of the dressing conditions. Further, Kannappan
and Malkin [5] showed experimentally that roughness
depends on grit size, and on wheel grade to a lesser
extent. One of the most comprehensive experimental
investigations is that by Farmer, Brecker, and Shaw [6],
in which they demonstrated the effect of more than
eight variables on surface roughness. They used their
results to construct a factorial design which is used to
make ‘relative’ predictions of surface roughness.

Tonshoff et al. [7] reviewed all theoretical and exper-
imental models for surface roughness dated from 1952
to 1992. They showed that various models considered
many grinding variables, and proposed some basic gen-
eral models that cover many of the variables. However,
they noticed that no single model (theoretical or empir-
ical) takes the effect of coolant into account. Experi-
ence shows that coolant application can play a
significant role on surface roughness [8] and should not
be ignored. A coolant not only acts as a lubricant and
smoothens the rubbing of the wheel on the surface, but
also as a surface cleaner. By flushing grinding chips
away from the grinding zone, it ensures finer penetra-
tion by grits, and prevents re-welding of chips to the
ground surface, thus improving the surface finish. Fur-
ther, from a contact mechanics point of view, coolant
affects the mechanical properties of a grinding wheel
and in turn influences the surface roughness [9,10].

Given the above complexity of physical phenomena
and confusion in experimental results, Zhang et al. [9]

Fig. 2. Fuzzy surface roughness.
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pointed out that dimensional analysis can lead to more
comprehensive models. Shaw [11] suggested the imprac-
ticality of any absolute modeling of surface roughness
and proposed a relative approach.

In relative analysis, investigation of dimensionless
parameters and factorial design are used to construct
relative models. These are models that predict the
change in surface roughness at some grinding state
compared with the known surface roughness at another
grinding state. An inherent problem with this approach
is that it assumes linear behavior between the two
states, and therefore, cannot be applied over a wide
range of grinding conditions.

This paper proposes a fuzzy model for surface rough-
ness estimation that takes many variables into account
and covers a wide range of grinding conditions. More-
over, the model can utilize the overwhelming experience
gained over decades by experienced grinding techni-
cians, which cannot be done by any of the existing
models. This work is encouraged by the earlier success
of fuzzy logic in modeling the residual stresses induced
by grinding [12] and in grinding wheel selection [13].

2. The fuzzy model for surface roughness

2.1. Fuzzy logic principles

Fuzzy logic is concerned with the continuous transi-
tion from truth to falsity states [14], as opposed to the

Fig. 5. Definition of auxiliary variables

Fig. 4. Definitions of modifier variables

discrete true/false transition in binary logic. The possi-
bility theory of fuzzy logic provides a measure of the
potential ability of a subset in belonging to another
subset [15]. It can be shown that probability theory is a
special case of possibility theory [16]. Therefore, fuzzy
logic has a wider scope and range of applications than
many statistical methods.

Engineering applications of fuzzy logic utilize this
continuous transition in subset membership to trans-
form a problem from crisp numeric to fuzzy linguistic
domains. Instead of operating with numeric values of
variables and using mathematical functions to describe
relationships, fuzzy logic uses common everyday lan-
guage to describe variables and uses fuzzy linguistic
rules to define relationships. This is particularly advan-
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tageous in grinding where some variables, such as grit
size, wheel grade, and the effect of coolant, have no
precise numeric values. It also enables the use of accu-
mulated knowledge and experience in the form of rules-
of-thumb, which cannot be incorporated into a
mathematical formula. Yet, the main power of fuzzy
logic is that, by proper selection of membership func-
tions and fuzzy rules, it can simulate highly non-linear
and complex systems whilst clearly maintaining the
physical implications and effects of every variable. A
fuzzy variable is defined by the triple [17,18]

(U, T, M) (1)

where U
 [UL, UU ], is the universe of discourse or
domain of the variable. A variable can be assigned
some linguistic values defined by the term set T. M can
be semantic rules or mathematical functions that
provide the mapping of the variable from U to T and
the reverse. If a variable has no crisp numeric values, it
can be defined by its linguistic terms only. Then, U can
be understood as a mean of sorting linguistic terms
relative to each other. A linguistic term, Ti, is defined
[17] by the pair:

Table 1
The primary rule-base
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Table 2
The modifier rule-base

IfNo. Is Then
Modifier variable Surface roughness is estimated by changing primary roughness

Machine vibration1 No changeLow
2 Medium One step coarser
3 High Three steps cover

Coolant effectiveness4 Low No change
5 Medium One step finer
6 High Two steps finer

Cross feed overlay7 Low No change
8 Half step coarserMedium

High One step coarser9

Bond type10 Vitrified No change
ons step finerResinoids11

ContinousWheel freshness One step finer12
Steady wear13

Compensation for missing primary rules
Equals highTable speed Medium14

15 Equals high+half step finerLow

16 Very low Equals high+one step finer

Grit size17 Fine Medium+one step finer
18 Very fine Medium+two steps finer

MediumDressing condition19 Average of fine and coarse

LowDepth of cut Equals madium+one step coarser20

Wheel speed Medium21 Average of high and low

Material hardness Medium22 Average of Soft and Hard

(S, P) (2)

where S
 [SL, SU ], S¤U, is the supporting subset of
Ti, and P is the set of parameters defining the member-
ship function mTi (y) expressing the degree of belonging
of the crisp value of y to a specific term Ti, Fig. 1. In
the present work, membership functions are defined by
five parameters P={a, b, c, d, e}, such that:
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The construction of fuzzy models, selection of member-
ship functions and generation of the rule-base are all
based on available experimental knowledge as well as
the concept of minimum inference error which has been
described in [19]. Once a model is constructed, deduc-

tion of information from the model follows three main
steps:

(1) Fuzzification of the input data, using Eq. (3).
Every crisp value, y, of a variable A is converted into a
set of numbers indicating the degree of membership of
y into each linguistic term Ti of A.

y
 T(Ti/mT(y)). (4)

For example from Fig. 2, a 1-mm surface roughness can
be converted to the set (Medium/0.34, Coarse/0.52):
meaning that in a grinding context, this surface rough-
ness is rather high even though it is still within average
ranges.

(2) Inference of model predictions using the fuzzy
rules. The fuzzy rule base contains a set of rules of the
form

if A then B, (5)

where A and B are fuzzy vectors of propositions con-
cerning input and output variables, respectively. Like
most engineering problems, a grinding process model
follows a modus ponens rule of inference [14,18], i.e.

A%� ( i(A�B)i [ B% (6)
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The simplest form of union and intersection opera-
tions are the max. and min. operators, respectively [14].
Therefore, inference reduces to the compositional rule of
inference [17]

m (B%)

= maxi ( min ( m (A%), mini(m(A), m(B)) ) ). (7)

Using Eq. (7), one can infer the surface roughness for a
given grinding situation.

(3) Defuzzification of the inferred fuzzy set, B%. This
is done by solving Eqs. (3) and (4) backwards from T to
U for each fuzzy term and taking the weighted average
from all terms [17–19].

2.2. A fuzzy model for surface roughness

Definition of membership functions for CLA surface
roughness is shown in Fig. 2 on a natural logarithmic
scale. It is based on the fact that the performance of a
surface is related to CLA roughness by a geometric
progression [11]. Hence, a standard sequence of rough-
ness values would be 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, and 6.4
mm. Therefore, standard surface roughness is fuzzy in
nature. For example, a 0.4-mm standard roughness is
not a precise number, but means a measured roughness
value more than 0.2 mm and less than 0.8 mm. This
concept is shown in Fig. 2 where ‘Fine’ roughness has
a nominal value of 0.4 mm but covers the range from
0.2 to 0.6 mm. The membership value, m, is understood
as the degree of the closeness of the measured value to
the nominal value of roughness.

The authors have identified 16 variables that can
affect surface roughness in grinding, Figs. 3–5. Six of
these variables are considered auxiliary variables, be-
cause their effects can be combined into only two fuzzy
variables, namely: ‘dressing condition’ and ‘coolant ef-
fectiveness’. These two variables and the remaining ten
constitute the set of variables affecting surface rough-
ness. Fuzzy rules describing the effect of each of these
12 variables were obtained from two sources:

(A) Experimental observations for seven primary
variables based on the work of Farmer et al. [6]. Data
showing the variation of surface roughness with (1)
table speed, (2) grit size, (3) dressing condition, (4)
wheel grade, (5) depth of cut, (6) wheel speed, and (7)
work material hardness were used to extract fuzzy rules
by the method described in [19].

(B) The remaining five variables are (1) machine
vibration, (2) cross-feed, (3) coolant effectiveness, and
the two binary variables: (4) bond type (vitrified or
resinoid), and (5) wheel freshness (continuous dressing
or steady state wear). The effect of these variables on
roughness has not been investigated experimentally,
mainly because of the difficulty in quantifying them.
Therefore, these variables are called modifier variables.
Fuzzy rules concerning the modifier variables are ob-
tained from available human experience with grinding
and from rules-of-thumb and recommendations made
by grinding wheel manufacturers, e.g. [8].

Figs. 3 and 4 show membership functions definitions
for the seven primary and five modifier variables, re-
spectively, sorted in a descending order of significance.
The way the inference engine works is as follows:

(1) Values of the six auxiliary variables are input to
the auxiliary rule-base that produces an output estima-
tion of the dressing condition and coolant effectiveness.

Table 3
The auxiliary rule-base

And ThenNo. If And
Dressing in- Dressing con-DressingDiamond
feed ditioncross-feed

FineFine1 Sharp Slow
Medium Fine2
Coarse3 Medium

Medium FineFine4
Medium Medium5
Coarse6 Medium

Fast MediumFine7
Medium Coarse8

CoarseCoarse9

Slow Fine10 Medium Fine
Medium11 Medium

CoarseCoarse12

Medium Fine Medium13
Medium14 Medium
Coarse Coarse15

Fine Medium16 Fast
Medium17 Coarse
Coarse Coarse18

Slow Fine19 Dull Medium
Medium20 Coarse

CoarseCoarse21

Medium Fine22 Medium
Medium Coarse23
Coarse24 Coarse

Fine CoarseFast25
Medium Coarse26
Coarse27 Coarse

Oil-mix Coolant effectCoolant Coolant

Any Low28 Off/dry Any

Water Clean29 MediumOn/dry
LowMedium30

Dirty31 Low

Solution Clean32 High
LowMedium33

Dirty Low34

CleanOil High35
Medium36 Medium
Dirty37 Low
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(2) Values of the seven primary variables are input to
the primary rule-base that produces an output estima-
tion of the surface roughness based on these variables
only.

(3) The estimated surface roughness and the five
modifier variables are input to the modifier rule-base
that produces the final estimation of the expected sur-
face roughness.

In principle, the primary rule-base can contain 6075
rules. However, many of these rules have no practical
relevance. The experimental data from [6] have resulted
in 495 fuzzy rules, of which only the most significant
100 rules are shown in Table 1. Table 2 shows the rules
used by the modifier rule-base. Fig. 5 shows the mem-
bership functions definitions for the six auxiliary vari-
ables, whilst Table 3 shows the corresponding rules for
the auxiliary rule-base.

3. Results and discussion

The operation of the fuzzy model can be best ex-
plained by an example. This example is obtained from
example abcdeh from Table 8.5 in [6]. All of the grind-
ing conditions used in that example are listed below
along with the fuzzfication of the crisp values to their
linguistic counterparts, according to Figs. 1–5:

1. Table speed: 13 fpm=4 m min−1= (medium/0.12,
high/1.0);

2. Grit size: no. 46= (medium/0.7, coarse/0.88);
3. Dressing condition: 85% (coarse/1.0), that is

because
� Diamond: (sharp/1.0)
� Cross-feed: 12 in min−1=300 mm min−1=

(fast/0.85)
� In-feed: 0.001 in=25 mm= (coarse/1.0)
� which result in firing of auxiliary rule no. 9.

4. Wheel grade: J= (medium/0.94, hard/0.32)
5. Wheel speed: 4500 fpm=23 m s−1= (low/1.0,

medium/0.35)
6. Work hardness: 63 HRc= (hard/1.0)
7. Machine vibration: (low/1.0)
� Coolant effectiveness: (low/1.0), that is because

8. Coolant application: off/dry cut, which fires auxil-
iary rule no. 28.

9. Cross-feed: 0= (low/1.0)
10. Bond type: vitrified
11. Wheel sharpness: steady state wheel wear.

Application of the above fuzzy variables to the pri-
mary rule base and using Eqs. (6) and (7) results in the
firing of primary rules nos. 74, 76, 84, 86, 87, 89; all
rules predict ‘fine’ surface roughness with possibilities
0.88, 0.52, 0.32, 0.32, 0.7, 0.52, respectively. Multiply-
ing possibility of each rule by its weight and collecting
the effect of all rules using the union (max.) operation,

the model concludes that roughness should be ‘Fine’
with membership level 0.61 (that is 0.88×0.7 from rule
no. 74). Defuzzification of (fine/0.61) from Fig. 2 results
in two values, 0.255 or 0.47 mm. However, because of
the firing of modifier rules no. 1, 4, 7, 10, 13, and 14, it
is concluded that the coarser value should be used.
Therefore, the prediction of the fuzzy model is that the
surface roughness should be 0.47 mm=18.5 min. This is
only a 2% error from the actual measured value of 18.1
min reported in [6].

It is important to note that the performance of the
model depends on the accuracy of the rules used in
building it. Rules-of-thumb used in the auxiliary and
modifier rule bases are context dependent and may not
be valid for all grinding situations. For example the
rules in Tables 2 and 3 may not be applicable for
creep-feed grinding or cases other than surface grind-
ing. Moreover, the primary rules in Table 1 are based
on the experimental results reported in [6] which are
not ensured to be error-free or not affected by other
factors relating to that particular laboratory. Further,
the definitions of membership functions in Figs. 3–5
are context dependent and are affected by personal
experience that may not be applicable in all grinding
situations. Fortunately, the model has been pro-
grammed on a spreadsheet using Excel, which makes it
very simple to change membership function definitions
and various fuzzy rules depending on the particular
context. Copies of the program can be obtained by
contacting the authors.

4. Conclusions

This paper has presented a complete fuzzy model for
prediction of the surface roughness produced by surface
grinding operations. Up to 16 independent variables
can be used to estimate the surface roughness. All
membership functions and the primary, auxiliary, and
modifier rule-bases have been presented in detail. The
effectiveness and high performance of the model have
been demonstrated by a worked example. Moreover,
the model is shown to be simpler, more effective,
superior in modeling non-linearity, and conceptually
clearer than many other approaches.
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