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Abstract. This paper establishes an analytical solution for describing the trajectories of abrasives in 
polishing spherical surfaces when the motions of the tool and workpiece involve three independent 
angular velocities. As an example of its applications, the solution is used to show the effect of angular 
velocities on the trajectory coverage uniformity on a spherical surface – a key aspect for the control of 
a uniform material removal in a polishing operation. This solution provides a theoretical tool for the 
parameter selection of such machining processes. 

Introduction 

Abrasive polishing is a central manufacturing process for achieving precise and smooth finish of 
complex surfaces, such as planar, spherical, aspherical and free-form surfaces. However, the control 
of the material removal in polishing these complex surfaces is complicated. For example, the quality 
of a polished surface of a workpiece is largely affected by the interaction conditions between the 
workpiece and abrasive particles, including the properties of the materials involved, the load applied, 
the temperature variation, and in some cases, the chemical reactions at the work-tool interfaces. 
In the polishing of a surface, a key aspect is to realise a uniform material removal over the whole 

area of interest, so that the geometrical accuracy of the surface generated by a precision shaping 
process before polishing, such as forming, cutting and grinding, can be precisely maintained. To this 
end, one should at least be able to understand and control the interaction frequency between an 
abrasive and a workpiece surface. The first step is therefore to describe the trajectories of motion of an 
abrasive on a surface to polish.  
Sun and Zhang et al [1] used the finite element method to analyze the contact status of the 

polishing of precision optical lenses, including contact pressure distributions and polishing 
trajectories. They also carried out experimental investigations and dimensional analysis [2], and 
obtained a simple empirical formula to evaluate the material removal in the polishing of optical 
spherical surfaces of hydrophilic polymer materials. However, a numerical analysis can hardly 
provide an exact diagram for describing the continuous variations of abrasive trajectories with the 
change of kinetic parameters of a polishing process; whereas the applicability of an experimental 
model is often limited by the range of its testing conditions. 
To overcome these difficulties, this paper will develop an analytical solution for describing the 

trajectories of abrasives in polishing a spherical surface and demonstrate the effect of angular 
velocities on the trajectory uniformity. 

Solution of the Spatial Polishing Trace  

Model Description. A schematic representation of the polishing process of a spherical surface, 
consisting of two bodies in contact, is shown in Fig. 1, where Body A, representing a workpiece (or a 
tool), has a spherical surface of radius R, revolving about a fixed axis at an angular velocity, 1ω , and 
Body B, representing a tool (or a workpiece), has a hemispherical surface of the same radius of Body 
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A, revolving about its symmetric axis at an angular velocity, 2ω , and simultaneously, making a 

pendulum motion about the centre of Body A at an angular velocity, 3ω . Since the surfaces of Bodies 
A and B have the same radius (R ) as defined above, these two surfaces are always in contact sliding 
during the motions of the two bodies. 
 

 
 

Fig. 1 An illustration of the polishing process and the corresponding coordinate systems. 
 
Two right-handed Cartesian coordinate systems, a global coordinate system OXYZ and a moving 

coordinate system oxyz , are introduced to describe the motions of the two bodies as illustrated in 
Fig.1. The two coordinate systems share the same origin located at the center of the spherical surface 
and the Y axis is perpendicular to the paper. For the moving coordinate system oxyz , y -axis is 
coincided with the pendulum motion axis of Body B and z -axis overlaps with the axis of rotation ( 2ω ) 
of Body B. The Z -axis of the global coordinate system OXYZ  is coincided with the revolving axis of 
Body A.  Without losing the generality, oxyz  is assumed to be coincided with OXYZ at the initial 
time 0tt = . The spherical coordinates ),,( ΦΘR  in OXYZ and ),,( ϕθr  in oxyz  are shown in the right 
part of Fig. 1. 
For simplicity, the angular velocities 321 ,, ωωω  are assumed to be independent of time, i.e., they 

are constants during a polishing. The pendulum motion of Body B in contact sliding with the surface 
of Body A has a maximal swing angle of 2α . Hence the cycle period of the swing motion is 

3/4 ωα=T . 

Analytical Solution. Consider two overlapping points at the initial time 0tt = , A and B , where A  

is fixed on the surface of Body A with coordinate ),,( 00
AAR ΦΘ  in OXYZ  and B  is fixed on the 

surface of Body B with coordinate ),,( 00
BBr ϕθ  in oxyz . As described before, Bodies A and B have the 

same radius so that Rr = . In the above notations, superscript A denotes Point A  and superscript B  
denotes PointB . Since OXYZ and oxyz  are coincident at 0tt = , 0 0 0 0( , , ) ( , , )B B B BR R θ ϕΘ Φ = .  

At time t , Point Amoves to its new position ),,( A
t

A
tR ΦΘ  in OXYZ  where 

0 1 0,A A A A
t ttωΘ = Θ + Φ = Φ , (1) 

while PointBmoves to its new position ),,( B
t

B
tR ϕθ in oxyz  where 

0 2 0,B B B B
t ttθ θ ω ϕ ϕ= + = . (2) 

Here, for simplicity, let the initial time 00 =t  and subscript t  denote a quantity at time instant t.  
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On the other hand, the Cartesian coordinate components of Point B at instant t  in oxyz  are 

0 2 0

0 2 0

0

cos( )sin

sin( )sin

cos

B B B
t

B B B
t

B B
t

x R t

y R t

z R

θ ω ϕ

θ ω ϕ

ϕ

= +

= +

=

. (3)  

Therefore, the Cartesian coordinate components of Point B  in OXYZ  are 

cos sin

sin cos

B B B
t t t t t

B B
t t

B B B
t t t t t

X x z

Y y

Z x z

= Ω − Ω

=

= Ω + Ω

, (4)  

where tΩ is the angle from Z -axis to z -axis, 

3

3

( ) / 4 / 4

( / 2) / 4 3 / 4t

t nT nT T t nT T
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Ω = − − − + ≤ < +

. (5) 

These coordinate components can be transformed into the spherical components in OXYZ  as  

( ) ( )

( )

2 21

1

sin /

cos /

B
t

B B B B
t t t t

B B
t t

R R

Y X Y

Z R

−

−

=

 Θ = + 
 

Φ =

. (6)  

Therefore, Point B in the surface of Body B will be in contact with Point A in the surface of Body A 
at time t  only if they have the same coordinate inOXYZ  at time t  

0 1

0

A A B
t t

A A B
t t

tωΘ = Θ + = Θ

Φ = Φ = Φ
, (7)  

which means that 

0 1

0

A B
t

A B
t

tωΘ = Θ −

Φ = Φ
. (8)  

Therefore, for a given PointB ),,( 00
BBR ΦΘ , its spherical coordinate ( , , )B B

t tR Θ Φ  in OXYZ  at any 

time t  is determined by Eq. (6), and its initial coordinate ),,( 00
AAR ΦΘ  in the surface of Body A is 

determined by Eq. (8). Hence, the trajectory of Point B in the surface of Body A is defined. 
Similarly, for a given Point A ),,( 00

AAR ΦΘ  in the surface of Body A, its Cartesian coordinates in 
OXYZ  at time t  are 

0 1 0

0 1 0

0

cos( )sin

sin( )sin

cos

A A A
t

A A A
t

A A
t

X R t

Y R t

Z R

ω

ω

= Θ + Φ

= Θ + Φ

= Φ

. (9)  
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They can be transformed into the Cartesian coordinate in oxyz  as 

cos sin

sin cos

A A A
t t t t t

A A
t t

A A A
t t t t t

x X Z

y Y

z X Z

= Ω + Ω

=

= − Ω + Ω

,  (10) 

The corresponding spherical coordinate components in oxyz  are 

( ) ( )

( )

2 21

1

sin /

cos /

A
t

A A A A
t t t t

A A
t t

r R

y x y

z R

θ

ϕ

−

−

=

 = + 
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=

.  (11) 

Hence at time t , the initial coordinates of PointB , 0 0( , , )B BR Θ Φ , which is in contact with Point A  can 
be written as 

0 2

0

B A
t

B A
t

tθ θ ω

ϕ ϕ

= −

=
, (12) 

which determines the trajectory of the given Point A  in the surface of Body B at any time t.  
As clarified before, the above derivation deals with constant angular velocities, 1 2 3, ,ω ω ω , during 

polishing. 
Verification. To verify the above analytical solution, a commercially available finite element code, 

ANSYS [3], is employed to simulate the above mentioned polishing process. Bodies A and B are all 
modeled as rigid ones with the same boundary and initial conditions as defined in “Model 
Description” Section. The angular velocities are 1 1200rpmω = , 2 600rpmω = and 3 50rpmω = , 

respectively. The maximum half-swing angle of Body B is 20α = o . The initial spherical coordinate of 
the point to simulate, i.e., Point A  in the surface of Body A in OXYZ ,  is 0 0( , , ) ( ,90,45)A AR RΘ Φ = . 
The polishing trajectories in the surface of Body B generated by Point A  obtained by both the 
analytical solution and the FEM are plotted in Fig. 2, as projection in the polar coordinate plane. The 
total simulation time is one second. It is clear that the analytical solution is very close to FEM 
simutation result, showing that our analytical solution is correct. 
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Fig. 2 Polishing trajectories on a spherical surface, where the solid line is the result from FEM and the 

dash line is from the analytical solution. 
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Results and Discussion 

The analytical solution established above can be used to easily predict the effect of kinetic parameters, 

1 2 3, ,ω ω ω , on the polishing quality of a spherical surface. As described previously, it is favorable that 

a combination of 1 2 3, ,ω ω ω could produce an even coverage of trajectories of abrasive motions in a 
polishing process. For simplicity, assume that there are four abrasives fixed on four given points in the 
surface of Body B, i.e., 0( 70 )a ϕ = o , 0( 50 )b ϕ = o , 0( 30 )c ϕ = o , 0( 10 )d ϕ = o . Their trajectories on the 
surface of Body A will show their polishing uniformity in an interval of polishing process. As a 
simple example to understand the effect of kinetic parameter combinations, let us focus on the 
variation of ω1 in this discussion while keeping ω2 = 1200 rpm and ω3 = 50 rpm unchanged. In the 
calculations, the maximum half-swing angle is taken as 20α = o  and the total time of polishing is 5 
seconds. To visualize the trajectories, they are projected onto plane XY as shown in Fig. 1. 
 

0

30

60
90

120

150

180

210

240
270

300

330

0

30

60
90

120

150

180

210

240
270

300

330

0

30

60
90

120

150

180

210

240
270

300

330

0

30

60
90

120

150

180

210

240
270

300

330

 
(a)  Point a     (b)  Point b           (c)  Point c   (d)  Point d  

Fig. 3 Trajectories generated by individual abrasives at ω1 = 340 rpm. 
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(a)  Point a    (b)  Point b           (c)  Point c   (d)  Point d  

Fig. 4 Trajectories generated by individual abrasives at ω1 = 170 rpm. 
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                               (a)  ω1 = 340 rpm    (b)  ω1 = 170 rpm 
Fig. 5 Combined trajectories of the four abrasives. 

 
Fig. 3 shows the trajectories of individual abrasives when ω1 = 340 rpm and Fig. 4 demonstrates 

those when ω1 = 170 rpm. We can see clearly that only a variation of a single angular velocity, ω1, 
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changes the abrasive trajectories significantly. The decrease of ω1 from 340 rpm (Fig. 3) to 170 rpm 
(Fig. 4) makes the trajectory coverage area on the spherical surface much wider and more uniform. As 
a result, when the trajectories generated by four abrasives are combined together, the process with ω1 
= 340 rpm (Fig. 5a) will leave many areas unpolished (the white areas), while that with ω1 = 170 rpm 
(Fig. 5b) will make a much more uniform polishing. 

Conclusions 

This paper has developed an analytical solution for describing the trajectories of individual abrasives 
at given locations on a tool surface when polishing spherical surfaces. The results show that carefully 
selected rotation speed can make the trajectories more evenly distributed over the whole polishing 
area. This analytical solution provides a theoretical tool for selecting polishing parameters. 
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