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Glass transition is an important factor in the thermo-forming of
glass elements of precision geometries, such as optical glass

lenses. Based on the theory of potential energy landscape, the

master equations can be established to describe the slowdown of

atomic motions in the glass transition range. However, the direct
solution of these master equations is almost formidable as the

hopping rates between basins vary in many orders of magnitude.

To make use of the master equations in the finite element simu-

lation of thermo-forming process, this article develops a Metrop-
olis stochastic process by assuming that the basin-hopping

probability at a given time interval depends only on the relative

hopping rate between the target state and the present state. It
was shown that with an infinitesimal time interval, this stochas-

tic description degenerates to the master equations, and that

with coarse time steps, the efficiency can be greatly improved

with good accuracy. The advantage of this new method was dem-
onstrated through the glass transition and thermo-forming simu-

lations of selenium by integrating the stochastic process with the

finite element method via the constitutive description of the

variation of volume and viscosity with temperature and time.

I. Introduction

GLASS transition is the oldest and most important ther-
modynamic process in the production of glass articles.

Even in the ancient times, a skillful artisan could create glass
objects of diverse and pleasing shapes by manipulating the
temperature-dependent fluidity of glass. However, in apply-
ing the same process to produce high-precision glass ele-
ments, for example, optical lens1 or mechanical parts,2 there
exist significant difficulties in the control of many key aspects
associated with the shaping of glass, such as geometry, den-
sity, residual stress, and refractive index.3 In a sense, all these
difficulties are due to the limited understanding of the under-
lying physics of glass transition.4

The phenomenology of glass transition is the continuous
change of thermodynamic variables, such as volume or
enthalpy, with temperature and time. Different cooling rates
lead to different properties of a glass material. Such depen-
dency can be delineated by the well-known phenomenological
model proposed by Tool5 and Narayanaswamy,6 who
ascribed the glass transition to the superposition of the tem-
perature-dependent exponential or nonexponential relaxation
processes with the parameters determined by fitting experi-
mental relaxation of some instantaneously measurable vari-
ables, for example, the refractive index.7 Although this model
seems straight and easily implementable, it does not offer
insight into the physics of the glass transition. It is also ques-
tionable to use the parameters thus obtained to the variables
not instantaneously measureable.

To involve the insight of microscopic structure in the theo-
retical model of amorphous material, Turnbull, Cohen, and
Grest8,9 considered that the volumetric difference between
the randomly packed and the orderly packed atomic systems
was a key variable in distinguishing glass and crystal. The
ensemble average of this volume difference was termed the
free volume. Free volume can nucleate and diffuse in materi-
als and act like dislocation in crystals to induce change of
atomic structures and affect the fluidity of a supercooled
liquid.10,11 This single-variable theory is preferred in many
research works. However, its application is limited due to its
oversimplification.12 Mode-coupling theory13,14 is another
approach in distinguishing the supercooled liquids from equi-
librium liquids, which predicts the occurrence of solid-like
atomic structure with long relaxation time (alpha-relaxation).
However, its applicability is also limited to the high-tempera-
ture regime far from the glass transition regime. Direct
molecular dynamics (MD) simulation is a powerful tool; but
due to its extremely short integration time step (typically a
femtosecond),15 it can only handle nanoscale problems with
unrealistically fast cooling process.

A significant pace in understanding glass transition has
been made by the theory of the potential energy land-
scape (PEL) introduced by Goldstein16 and Stillinger and
Webber.17,18 It was envisaged that the potential energy varia-
tion over the space of atomic coordinates is a hyper-surface
with wells, peaks, and saddles. The basic idea was to charac-
terize this hyper-surface by two features, namely, the energy
minima, corresponding to the mechanically stable packings,
named inherent structures, and the basins surrounding the
energy minima, corresponding to the vibration motion about
those mechanically stable points. As the inherent structure is
generally considered temperature-independent, the vibration
motion is thermally activated which renders the probability
for system hopping between inherent structures. It is reason-
able to assume that many physical properties depend merely
on how the atoms are packed. Therefore, if one knows such
dependency and probabilities for the system to take each of
the inherent structures, the macroscopic property, based on
the ensemble theory, will be a simple calculation of the statis-
tical expectation. Heuer19 has provided an excellent review of
the PEL theory.

As the exploration of all potential energy minima is for-
midable even for tens of atoms, the application of the PEL
theory requires further simplification. The most striking
assumption has been that similar inherent structures with
very close energy minima can be visited with the same
probability therefore can be grouped as the same micro-
state, or the basin.20 The number of the distinct atomic
arrangements in each basin can be regarded as the degener-
acy, which may be determined from the equilibrium state19

or by the Wang–Landau algorithm.21,22 If the hopping rates
between microstates, for example, the Arrhenius-type hop-
ping, are further given, then the master equations, which
can describe the dynamics of the atomic structure transi-
tions, can be established. The time-series solution of these
master equations renders the variation of various physical
properties with temperature and time. Although these
assumptions seemingly oversimplify the dynamics of an
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atomic system, the practical result is encouraging. Mauro
and Loucks23 implemented the master equation approach to
study the glass transition of selenium and obtained a satis-
factory agreement with the experimental result in terms of
the volume change in the glass transition range. To effi-
ciently solve the master equations, they24 devised the meta-
basin technique, through grouping the basins with fast
intrabasin hopping rates into a metabasin and by assuming
the ergodicity in metabasins, to allow the integration time
step to be inversely proportional to the cooling rate, so that
the simulation time can be a constant for the cooling rate
varying from 1012 to 10�12 K/s. This approach seems to be
practical for calculating various thermodynamic properties,
such as molar volume, potential energy, enthalpy, and
entropy, for realistic glass-forming systems with an arbitrary
thermal history.

This study aims to achieve a much higher simulation effi-
ciency by developing a Monte-Carlo approach to obtain a
close approximation to that of the exact solutions of the
master equations. In this way, the master equation method
can be incorporated into the finite element simulation, so as
to deepen the understanding of glass behavior in a prescribed
thermo-mechanical process.

II. Master Equations and Approximate Monte-Carlo
Solution

(1) Master Equations
Suppose that a PEL or an enthalpy landscape of an atomic
system can be described by a countable number of basins
with energy minima Ui, the degeneracy factor gi, and the
effective saddles Uij (Uij = Uij) between two basins i and j.
The hopping rate Kij from basin i to j is assumed to be24

Kij ¼ v0gj exp �Uij �Ui

kBT

� �
(1a)

where v0 is the reference attempting frequency, kB and T are
Boltzmann constant and temperature, respectively. The sad-
dle energy Uij which must be crossed by the hopping i ? j is
difficult to be quantified. Mauro et al.23 assumed that there
is a minimum barrier DUi associated with basin i, which may
correspond to the rotation or break of atomic bond. They
then assumed that23

Uij ¼ max Ui þ DUi;Uj þ DUj

� �
(1b)

More generally, all possible paths for the hopping from
basin i to basin j should be considered. The lowest maximum
energy among different paths is the critical energy Ucij

(Ucij = Ucji). The saddle point Uij is then given by

Uij ¼ max Ucij;Ui þ DUi;Uj þ DUj

� �
(1c)

Dyre25 argued that Ucij should be a constant energy Uc

based on lattice percolation model. Whereas Doliwa and
Heuer26 found that the effective barrier could be linearly
related to the basin energy based on their investigation of the
average lifetime in a basin. It should be noted that if all
basins are reachable without crossing other basins, Eq. (1c)
reduces to Eq. (1b).

If the saddle energies have been defined for all possible
hopping events, the master equation can be expressed as

_fi ¼
XN
j¼1

�fiKij þ fjKji

� �
(2)

where Kii = 0 and fi denotes the probability to find the
system in basin i and the overhead dot indicates the time

derivative. By letting Lii ¼ �Pn
j¼1 Kij and Lij = Kij, Eq. (2)

can be recast to a matrix form, i.e.,

_f ¼ fL (3)

At a high temperature, the hopping rates must be suffi-
ciently large to keep the system in the detailed balance
(equilibrium state), which requires:

fiKij ¼ fjKji (4)

The steady-state solution of Eq. (4) (i.e., _f ¼ 0 ¼ fL) gives
the Boltzmann distribution:

�fi ¼ gi exp � Ui

kBT

� ��
Z (5)

where Z ¼Pn
i¼1 gi exp �Ui=kBTð Þ is the partition function. In

a cooling process, the hopping rates Kij reduce exponentially
with temperature and the system departs from equilibrium
and enters the supercooling region, in which the ergodicity is
continuously broken and the viscosity continuously increases.
Glass transition temperature is defined at the point where
viscosity reaches 1012 Pa·s.27 At the temperature much lower
than the glass transition point, the detailed balance is not
reachable within a finite time period. Therefore, fi is not a
state variable but a history-dependent variable. They have to
be determined from Eq. (3), provided that the thermo history
starting from a known combination of fi can be given (e.g.,
by Eq. (5) at high temperature).

Equation (3) can be numerically solved by a direct Euler
Integration (EI) or by an analytical integration, if all eigen-
values and eigenvectors of matrix L can be accurately deter-
mined. An alternative is to use the Gillespie Stochastic
Simulation Algorithm (GSSA),28 which can track the detailed
time history of every transition event. Nevertheless, these
methods are impractical for a system even with only tens of
molecules, because the elements of L vary in many orders of
magnitude which either induces significant numerical errors
in calculating the eigenvalues or requires an extremely small
time step for the direct simulation (i.e., EI and GSSA). In
this sense, the Metabasin method proposed by Mauro et al.24

becomes appealing due to its efficiency and clear physical
ground. However, it is noted that the metabasin approach
needs to check the hopping rate between every two basins,
leading to a computational complexity of O(N2) where N is
the number of basins. If the number of basins is large, the
metabasin approach is still extremely demanding. A new
approach which can reduce the computational complexity
significantly is therefore necessary. This is described below.

(2) Approximate Monte-Carlo Simulation
Consider a glass transition process represented by the vol-
ume–temperature diagram schematically shown in Fig. 1. If
the crystallization can be avoided through fast cooling, theo-
retically one can reduce the cooling rate _T to obtain an equi-
librium curve ABC, along which the detailed balance is
retained at every temperature. If the PEL and the volume of
each inherent structure are given, this process can be simu-
lated by numerically integrating the master equations. To
obtain equilibrium curve ABC, a sufficiently long relaxation
time trel must be given at every temperature. The glass transi-
tion along path ABD, which is a deviation from the equilib-
rium curve ABC, is simply due to the insufficient relaxation
time (namely, DT

	
_T\trel where DT is the temperature reso-

lution in the simulation). Now, suppose that there is a differ-
ent description of basin hopping, which can possess one or
several adjustable parameters to tune the hopping rates and
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to assure the detailed balance (Eq. (4)) at a longtime limit.
We can conjecture that this description may be applicable to
approximate the actual solution of the master equations. As
represented in Fig. 1 by the dashed curves, the fictive hop-
ping process renders another glass transition process for the
same cooling rate along curve ABD’. By adjusting the
parameters, we expect the dashed curve (fictive process) can
match the solid curve (actual process). Conceptually, this
is in accord with the phenomenological picture described
by Tool5 and Narayanaswamy,6 but our simplified basin-
hopping process to be constructed below will enable the
integration of inherent atomic structures.

For convenience, let us call a unit atomic system with
known PEL a species. For a macroscopic system composed
of M species, fi(t) is the fraction of species in basin i at
time t. We assume that the dynamics of these species does
not influence each other (i.e., the factorization hypothe-
sis19), so that their hopping can be described in a unified
way. After Dt, the probability for jumping from basin i to
basin j is Pij(Dt). A jump normally requires j 6¼ i. But, we
may avoid the hassle by defining Pii = 0 and let basin j be
any basin between 1 and N. This jump includes two sto-
chastic events. The first is the selection of the target basin j,
whose probability is denoted by Sij(Dt); and the second is
the jump, whose probability is denoted by Jij(Dt). We then
have

fi tþ Dtð Þ ¼ fi tð Þ 1�
X
j

Sij Dtð ÞJij Dtð Þ
 !

þ
X
j

fj tð ÞSji Dtð ÞJji Dtð Þ

¼ fi tð Þ �
X
j

fi tð ÞSij Dtð ÞJij Dtð Þ � fj tð ÞSji Dtð ÞJji Dtð Þ
 �
:

(6)

At a steady state, fi tþ Dtð Þ ¼ fi tð Þ ¼ �fi. By substituting
Eq. (4), the above equation is reduced to

Sji Dtð ÞJji Dtð Þ
Sij Dtð ÞJij Dtð Þ ¼

�fi
�fj
¼ Kji

Kij
(7)

Therefore, any selection and jumping events which satisfy
the above equation should render the detailed balance at
longtime limit. For simplicity, we assume that (1) the selec-
tion is not biased to any basin, namely Sij = 1/N; and (2) the
jumping probability is

Jij Dtð Þ ¼ 1� exp �bkijDt
� �� �Kij

kij
(8)

where kij = Kij + Kji and b is the fitting parameter for match-
ing the simplified stochastic process to the actual solution of
the master equations.

The Monte-Carlo algorithm of the above simplified sto-
chastic process is easily implementable. One can use the
pseudo-random number generator provided by any computer
language to simulate the variation of the M species in a
macroscopic system. It is apparent that the computation com-
plexity is O(M) at each time step. As the pseudo-random
number has a limited resolution, we shall consider a small
number, say 10�4, to be equal to the zero probability in the
Monte-Carlo simulation. The detailed algorithm is as follows:

(1) Give the PEL information, the initial temperature T,
initial fi, cooling or heating rate _T, Dt, b, and the
number of species M.

(2) For a species k in basin i, generate a random number
ξ (ξ ∈ [0,1)); then, the target basin is j = INT (Nξ)
+ 1 where INT(·) means integer part.

(3) Generate another random number ξ, if ξ < Jij, the
species jumps into basin j and fi(t + Dt) = fi(t) � 1/
M, fj(t+Dt) = fj(t) + 1/M.

(4) k = k + 1; if k � M, go to step (2).
(5) Update temperature T ¼ Tþ _TDt, the jumping rates

Jij and the time t = t + Dt.
(6) Check the completion condition. If not complete, let

k = 1 and go to step (2).

III. Result and Discussion

(1) Comparison with Other Solutions of Master Equations
We first test the above Monte-Carlo algorithm with a toy
system as shown in Fig. 2(a). Suppose the system is balanced
at 800 K and then cooled down to 100 K with different cool-
ing rates. The average potential energy is given by
U ¼Pi fiUi. In the Monte-Carlo simulation, we set M = 103,
v0 = 0.5 GHz, and Dt ¼ 0:01K

	
_T. Figure 2(b) shows the

variation of the average potential energy obtained by differ-
ent approaches. It is noted that when b = 6, the simplified
stochastic process agrees very well with the results of direct
integration. The result of metabasin approach24 is also
included in Fig. 2(b). The metabasin means the group of
basins with relatively small intrabasin barriers [say, the group
of basins 4 and 5 as shown in Fig.2(a)]. Within a metabasin,
the intrabasin hopping rates are all larger than the threshold
rate kth (say, kthDt = 10). Therefore, the population within
a metabasin can assumed to be the equilibrium population
and the time step for simulating the hopping among different
metabasins can be proportional to the cooling rate. At high
temperature, all basins are in the single metabasin. With the
reduction of temperature, this metabasin splits into multiple
metabasins. At a sufficiently low temperate, the metabasins
split into basins. The accuracy of the metabasin approach
can be controlled by the threshold rate kth. A larger kth leads
to higher accuracy and longer computational time. However,
in our approach, the basin-grouping procedure is discarded
as it is time-consuming especially for a large system. Instead,
we use Eq. (8) to determine the jumping probability from
basin i to basin j within the time step Dt. Based on this equa-
tion, for the two adjacent basins with sufficiently large inter-
basin hopping rates, the jumping probabilities between them
approach time-independent constants. Formally, if kijDt is
sufficiently large, the jumping probability Jij approaches
exponentially to a constant Kij

	
kij. In this way, the correla-

tion between adjacent basins is retained. Conversely, if kijDt
is sufficiently small, the jumping probability approaches zero,
indicating the loss of correlation. In the following, we only
compare our Monte-Carlo model to metabasin approach as
the direct integration is not viable for a large system.

Fig. 1. The volume–temperature diagram of a glass-forming liquid.
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To demonstrate the algorithm for a realistic glass-forming
system, we use the data provided by Mauro et al.23 for a
system of 64 selenium atoms. Seventy-one unique inherent
structures with different enthalpy, degeneracy, and molar
volume were identified. The scaling of enthalpy and degener-
acy with molar volume is shown in Fig. 3(a). The activation
barrier DUi associated with basin i is randomly given at
either 1.1 or 0.8 eV. The 1.1 eV barrier occurs twice as
frequently as the 0.8 eV barrier. We set M = 104,
v0 = 1.4 THz,23 and Dt ¼ trel ¼ 0:01K

	
_T. Figure 3(b) com-

pares the results from our algorithm and the metabasin
approach in calculating the volume change with temperature
for various cooling rates, where V0 is the molar volume of
the equilibrium liquid at 490 K. Excellent agreement is
obtained with b = 100. Figure 3(c) compares the variation
of fi with molar volume at different temperatures, which
again shows very good consistency.

We further consider a thermal cycle. Assume, the material
is originally at low temperature with the initial constitution
identical to the equilibrium state at a fictive temperature
Tf, namely, fi t ¼ 0ð Þ ¼ �fi Tf

� �
. We heat up the material

to a temperature suitable for molding (say, 360 K,
viscosity � 105Pa·s) and then hold for 10 s before cooling
down to low temperature (200 K). Figure 3(d) shows the vol-
ume change with the temperature for Tf = 253, 273, and
293 K. The good agreement between the metabasin approach
and the our Monte-Carlo simulation indicates that our new
method can be used to simulate the variations of physical
properties of a glass-forming system under a realistic thermal
cycle.

(2) Efficiency
The main advantage of the present method is that the com-
putational complexity becomes independent of the basin
number N. To verify this, we evenly discretized the curves in
Fig. 3(a) into 5000 points for constructing a fictive system.
Figure 4 shows the Monte-Carlo simulation result of the
cooling curves (cooling rate = 1 K/s) for M = 102, 103, 104,
and 106. It is noted that smaller M gives larger fluctuations.
However, when M � 104, the fluctuation is minimized and
the curves overlap, indicating that M = 104 is adequate to
simulate the macroscopic response of a system characterized
by as many as 5000 inherent structures. It should be noted
that in case of N = 5000, the metabasin approach may need
a few days to conduct one simulation of glass transition due
to the complexity of O(N2). Nevertheless, the present Monte-
Carlo algorithm only need a few minutes for the same glass
transition process with M = 104.

(3) Determination of b
We introduced b in Eq. (8) to adjust the jumping probability
Jij to control the speed of a system approaching its equilib-
rium state. A larger b leads to the larger jumping probability
Jij. For an infinitesimal Dt, Jij ? bKijDt. With Sij = 1/N,
Eq. (6) reduces to

_fi ¼ lim
Dt!0

fi t þ Dtð Þ � fi tð Þ
Dt

¼
X
j

�fi tð Þ b
N
Kij þ fj tð Þ b

N
Kji

� 
(9)

Therefore, with b = N and an infinitesimal Dt, the Monte-
Carlo simulation gives the exact solution of the master
equations. The incorporation of b is because we defined a
two-step hopping in the stochastic process. In the first step,
the species should choose a direction to go, which comes
with 1/N probability (N is the number of basins). This selec-
tion step may be probably nonphysical but necessary in com-
puter simulation. We then used b = N to remedy this
deficiency. For a coarse time series, many hopping events are
omitted. b is then used not only to compensate the selection
probability but also to artificially increase the hopping rate
to approximate the process with infinitesimal Dt. We then
assert that b � N in the simulation. For example, in Fig. 2,
as N = 5, we used b = 6 (slightly larger than N) because the
Dt cannot be infinitesimal in the computation.

To make the effect of b more transparent, let us consider
a simplified system with only two basins 1 and 2 and the
equilibrium population �fi ¼ Kji

	
kij (i, j = 1, 2, and i 6¼ j).

Starting from arbitrary fi(t0), after one time step Dt, we have

fi t0 þ Dtð Þ � �fi ¼ fi t0ð Þ 1� SijJij
� �þ fj t0ð ÞSjiJji � �fi

¼ 1þ exp �bkijDt
� �
2

fi t0ð Þ � �fi
� �

Note that the analytical solution of the master equations of
the two-basin system after the relaxation time trel is
fi t0 þ trelð Þ � �fi ¼ exp �kijtrel

� �
fi t0ð Þ � �fi
� �

. We then compare
the approximate relaxation processes with different b to the
analytical solution in Fig. 5. In the calculation, we use a rela-
tively large Dt, that is, kijDt = 0.1. It is noted that with this
coarse Dt, b = N = 2 is not the best choice. A slightly larger
b ( = 2.1) can give rise to a better approximation of the
relaxation process.

It is difficult to determine b analytically albeit the above
discussion indicates that b is mainly a function of Dt and N.

Fig. 2. The solution of master equations of a simple potential energy landscape: (a) the potential energy landscape with five basins; (b) the
comparison of different solution methods: for b = 6, the result of the Monte-Carlo algorithm agrees well with exact and metabasin solutions.
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Practically, b is associated with a well-defined thermal pro-
cess and a suitable Dt ensuring that the simulation can be
done within a reasonable duration and is estimated through
the comparison of the Monte-Carlo solution to more accu-
rate solutions. For different Dt, different b should be used.
In studying the cooling processes with cooling rate varying

from 1012 to 10�12 K/s as shown in Fig. 3(b), we used the
cooling rate to scale Dt. Then, a single b [b = 100 in
Fig. 3(b)] does not allow Monte-Carlo simulation to match
perfectly, all the results of the metabasin approach as shown
in Fig. 3(b), although they are very close. Nevertheless, this
example also indicates that the system response is not

Fig. 3. The simulation of glass transition of a realistic glass-forming system (selenium): (a) the scaling of basin enthalpy and degeneracy with
the molar volume of the inherence structure; (b) the comparison of the volume–temperature curves obtained by the Monte-Carlo simulation and
the metabasin approach for different cooling rates; (c) the comparison of the basin visiting probability at three different temperatures for the
cooling rate 1 K/s; (d) the comparison of the volume–temperature curves for different thermal cycles.

Fig. 4. The convergence of the Monte-Carlo simulation when
M > 104 for a fictive glass-forming system with 5000 basins.

Fig. 5. The comparison of the relaxation process of the two-basin
system.
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sensitive to b. Adjusting b is not difficult especially when each
Monte-Carlo simulation can be done within several minutes.
In our tested examples, b is found to be around (1–10) N.

(4) Difference from Kinetic Monte-Carlo Simulation
It should be noted that our algorithm is different from the
Kinetic Monte Carlo (KMC) algorithm, which is based on
GSSA. We regard KMC as the exact solution to the master
equations. In KMC, the selection of the transition path is
biased to the fast events, and the time step is a stochastic var-
iable corresponding to the occurrence of one hopping event.
The average of time steps is inversely proportional to the
sum of the basin hopping rates, which is, however, too small
to implement KMC in a macroscale simulations. Our algo-
rithm is an approximate solution, but allows the large pre-
scribed time step. The idea of our algorithm is different from
KMC. We do not track exactly every stochastic event in the
transition history but only the major events at the specified
time steps. We consider that the hopping direction is uni-
formly toward all basins. Whether this hopping can happen
depends on the probability given in Eq. (8), which is just a
function of the time step and the forward and backward hop-
ping rates along the selected hopping direction. We ensure by
Eq. (9) that the model approaches the exact solution of the
master equations if an infinitesimal time step can be used and
the population is sufficiently large.

IV. Further Applications

(1) Viscosity
To further implement the Monte-Carlo algorithm to simulate
a thermo-mechanical process of a glass-forming system, one
should characterize the variation of viscosity with the ther-
mal history. Given the master equations, Mauro et al.29

assumed the validity of the Stokes–Einstein relation and
expressed the viscosity as

gMauro ¼ DNT
XN
i¼1

fi T tð Þð Þ Liij j
 !�1

(10)

where D is a constant related to the average hopping dis-
tance of atoms from one basin to another, Liij j is the total
rate for leaving the basin i.

However, the Stokes–Einstein relation actually breaks
down at the glass transition range as evidenced by experi-
ments30,31 and MD simulations32 and as analyzed by Stillinger
and Hodgdon33 and Taurjus and Kivelson.34 Kushima et al.35

and Li36 ascribed the breakdown to the ansatz that the
diffusivity is dominated by the fast hopping events, whereas
the viscosity is more related to the slow hopping. They envis-
aged that at a temperature sufficiently lower than the melting
temperature, a stress-free macroscopic system can be consid-
ered as an ensemble of many microscopic systems. Each
microscopic systems has the signature of the basin index i and
the residual stress ri. The macroscopic stress-free condition
requires

PN
i¼1 firi ¼ 0. The stress fluctuation of the micro-

scopic system was purely attributed to the basin hopping.
Hence, by invoking the Green–Kubo relation, they get36:

gLi ¼
C

kBT

XN
i¼1

fi T tð Þð Þri
X
j

Aij x ! 0ð Þ�1rj (11)

where C is a scaling constant, Aij xð Þ ¼ xdij � Lij and ri is
the residual shear stress of the atomic cluster at basin i which
is randomly sampled in [�1,1]. We use the Linear Algebra
Package LAPACK (http://www.netlib.org/lapack/) to solve
equations

P
j AijX ¼ rj. To reduce the numerical error, we let

A0
ij ¼ Aij

	
Lii and solve

P
j A

0
ijX ¼ ri=Lii.

For supercooled liquid, the viscosity is considered to be
inversely proportional to the characteristic relaxation time.

Adam and Gibbs37 speculated that the system with more
possible configurations should have less characteristic relaxa-
tion time as it could relax along more trajectories in the
phase space. The Adam–Gibbs relation has met with remark-
able success in describing the relaxation behavior of a wide
variety of systems.7 It is formulated as

gAG ¼ g0 exp
BkBTg

TSc

� �
(12)

where g0 and B are constants and Sc is the configurational
entropy, which is the ensemble average of configurational
entropies of individual basins19:

Sc T tð Þð Þ ¼
XN
i¼1

fi T tð Þð ÞSci ¼ kB
XN
i¼1

fi T tð Þð Þ ln gi þ ln g0

 !

(13)

We can introduce another parameter g0 in Eq. (13)
because gi is generally normalized about the estimate of the
maximum number of atomic configurations.23 The exact
number of configurations is never known.

The viscosity of selenium has been measured in several
ways.38,39 We collected those experimental data in Fig. 6(a).
In these experiments, the material was annealed at the tem-
perature well above the glass transition temperature for
hours prior to the viscosity measurement. We should there-
fore regard that the material is in equilibrium state and
hence fi T tð Þð Þ ¼ �fi Tð Þ in Eqs. (11–13). It is noted that at
temperature 305 K, the measured viscosity is about
1012 Pa·s.38,39 The constants D and C in Eqs. (10) and (11)
can then be determined according to this condition. We set
Tg = 305 K and interpret the viscosity–temperature diagram
in the form of the Angell’s plot.27 The calculated curves
from Eqs. (10), (11), and (12) were compared in Fig. 6(a)
with the experimental data. It is noted that both Eqs. (10)
and (11) do not follow the trend of the experimental data.
Equation (11) gives good prediction of low-temperature vis-
cosity but fails for high temperature. Nevertheless, Adam–
Gibbs relation Eq. (12) excellently fits the experimental data.
Therefore, for the present case, we shall resort to the Adam–
Gibbs relation as it admirably describes the experimental
measurements.

With the parameters g0, B, and Sc0 determined from the
viscosity of the equilibrium liquid, let us now consider the
viscosity of the nonequilibrium glass obtained with different
cooling rates. Figure 6(b) shows that with the decrease of
temperature, the viscosity of glass deviates from the equilib-
rium curve to the iso-configurational (i.e., Sc does not
change) curve, which may be termed the fragile-to-strong
transition. This transition has also been evidenced in window
glass40 and in metallic glasses.41,42

(2) Finite Element Simulation
In the finite element simulation, we consider the thermal
cycle similar to that shown in Fig. 3(d). The volume change
with temperature is embodied by the plastic volumetric strain
epv. The viscous deformation is shear dominant and the
Prantl–Reuss relation is used to update the stress field from
the elastic response of the material. The constitutive law is
specified as

_rij ¼ 2G _eij � 1

3
dij
X3
k¼1

_ekk � �s
gAG

r0ij
2�s

 !

þ 3K
X3
k¼1

_ekk � _epv

 !
(14a)
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r0ij ¼ rij � 1

3

X3
k¼1

rkk (14b)

�s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

X
i

X
j

r0 ijr0ij

s
(14c)

where rij and eij are the stress and strain tensors, respectively;
G and K are the shear and bulk modulus; r0ij and �s are the
deviatoric stress tensor and the equivalent shear stress; and
the overhead dot denotes the time derivative. A user material
subroutine is developed to implement the Monte-Carlo algo-
rithm and the above formula in the finite element analysis.
The simulation was conducted with the ABAQUS EXPLI-
CIT solver.

The selenium cylinder as shown in Fig. 7(a) is subjected to
the warm compressive molding to form a lens shape as con-
sidered by Yi et al.1 For simplicity, we consider the molds to
be rigid, the system to be axisymmetric and the heat
exchange between the material and its environment to be
convective. The mechanical and thermal properties used in
the simulation are listed in Table I. Initially, the material is
taken out from a refrigerator with initial temperature 200 K
and initial constitution identical to the equilibrium state at
Tf = 293 K (i.e., fi t ¼ 0ð Þ ¼ �fi Tf

� �
). The high temperature

(TH) gas is then purged for tH seconds to heat up the mate-
rial with the convective heat transfer coefficient hH. In the
last 10 s of heating stage, the upper mold moves downward
at the speed of 0.14 mm/s to compress the gob. After a com-
pression of 10 s, the upper mold is hold still and the low-
temperature (TL) gas is purged to cool the material for tL
seconds with the convective heat transfer coefficient hL.
Finally, we remove the upper mold and investigate the resid-
ual stress after the molding process. The parameters TH, hH,
tH, TL, hL, and tL used in each simulation are listed in the
caption of Fig. 7.

Figure 7(b) is the plot of von Mises stress (
ffiffiffi
3

p
�s) after the

compressive molding. It is observed that the residual stress is
in the range of 1–20 MPa. As a comparison, if we consider
the change of viscosity along the equilibrium curve, the resid-
ual stress distribution is similar as shown in Fig. 7(c). This
result indicates that the information on the fragile-to-strong
transition of viscosity is not significant in evaluating the
residual stress resulted from a molding process. The experi-
mentally measured viscosity, which is generally obtained for
the equilibrium system, can then be directly applicable.
A reduced cooling rate improves the homogeneity of

temperature distribution, which should therefore induce less
residual stress. We reduced the convective heat transfer
coefficient (hL) at the cooling stage and increased the cooling
time by 10-fold. The result in Fig. 7(d) indicates that the
residual stresses can be mitigated to be less than 3 MPa.

In a mass production process, the above large increase in
cooling time is undesirable. We should consider a postmold-
ing annealing process to reduce the residual stress. Suppose
that after molding, the glass is moved to a furnace with the
temperature at 360 K. After keeping the environmental tem-
perature for 60 s, the furnace is cooled down to 200 K in
600 s. The residual stress distribution after annealing is
shown in Fig. 7(e). It is noted that the residual stress is ran-
domly redistributed in the material. This randomization is
attributed to the stochastic effect of the Monte-Carlo simula-
tion, which makes two elements with identical thermal his-
tory have slight different volumes. To mitigate this stochastic
effect, one shall refine the mesh and increase M. For the
present case, such randomized residual stress distribution
should indicate the macroscopic uniformity and the mitiga-
tion of residual stress. However, as illustrated in Fig. 3(d), a
thermal cycle generally leads to a residual volume change.
Therefore, albeit the residual stress is reduced by an order of
magnitude, the geometry of the glass product also changes
substantially in comparison with Fig. 7(b). To mitigate this
geometry change in annealing, the annealing temperature
should be reduced. We tried 340 K and present the result in
Fig. 7(f), which shows the mitigation of residual stress with-
out notable change of geometry.

V. Concluding Remarks

This study has developed a simple stochastic process to simu-
late the variations of physical properties in the glass transi-
tion process. The corresponding Monte-Carlo algorithm is
effective in providing excellent approximation to the exact
solutions of master equations. The method is efficient owing
to the independency of the basin number. These advantages
allow us to incorporate the Monte-Carlo simulation into the
finite element simulation of glass molding process, which can
offer detailed information of the variation of various physical
properties. We have also shown that a reduced cooling rate
can effectively reduce the residual stress. However, the signifi-
cantly increased operation time is undesirable in mass pro-
duction. An annealing process can be used to reduce the
residual stress and to improve the macroscopic uniformity,
as an alternative.

The new Monte-Carlo method is applicable to any glass-
forming system if the landscape of the potential energy or

Fig. 6. The viscosity–temperature diagram: (a) the viscosity of equilibrium liquid (Tg = 305 K); (b) The viscosity of glass.
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enthalpy can be quantified. It is of practical importance that
the detailed simulation of the glass transition as shown in
Section IV allows one to optimize the compression molding
process with much reduced experimental efforts.

Particular care is needed when applying our method to
describe the change of material properties in glass transition
range. The factorization hypothesis is the fundamental
assumption of our model, which allows us to simulate the
uncorrelated behavior of individual atomic subsystem
(namely the species). The macroscopic response of material is

then the average of the responses of M species. For small
population, say M = 100 in Fig. 4, the average response is
notably different from the result of larger M, which demon-
strates the difference between small population and large
population or concisely the size effect. This size effect is the
consequence of stochasticity. Under the factorization hypoth-
esis, if one averages the behaviors of a number of small-
population systems, the resulted macroscopic response should
still be identical to that of larger population. In our exam-
ples, we found that M > 104 is sufficient for the macroscale
simulation.

The factorization hypothesis may fail43 at low temperature
due to the increase of dynamic length scales. This size effect
may better be interpreted as the coupling effects among spe-
cies, which is not considered in the present model. To incor-
porate the coupling effects, the spatial distribution of species
and the momentum and energy transfer between species
should be considered. In such cases, the temperature will not
be the only thermodynamics variable affecting the hopping
from one basin to another. It is not clear how to include the
coupling effects in the master equations and how significant
these effects can be. However, in view of the fact that the
hopping among basins is also increasingly difficult as temper-
ature reduces, the effect of coupling on the temperature
dependency of some physical properties, for example, the
volume or diffusion constant,43 may not be prominent. But
for the viscosity, the effect of coupling will be significant as
demonstrated by Rehwald et al.43
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Fig. 7. The finite element simulation of compression molding of selenium: (a) the finite element model and (b–f) the plots of residual stresses
after different molding processes with TH = 360 K, hH = 100 W/m2K, tH = 60 s, TL = 173 K, hL = 100 W/m2K; (b) tL = 20 s; (c) tL = 20 s and
use the viscosity of equilibrium liquid; (d) tL = 200 s; (e) tL = 20 s and annealed from 360 to 200 K for 600 s; (f) tL = 20 s and annealed from
340 to 200 K for 600 s.

Table I. The Parameters Used in the Monte-Carlo Finite

Element Simulation

Name Symbols Value Unit

Bulk modulus K 8.3 GPa
Shear modulus G 3.7 GPa
Density 4000 kg·m�3

Thermal conductivity 2 W·(m·K)�1

Specific heat 0.519 J·(kg·K)�1

Monte-Carlo
parameter

b 100

Adam–Gibbs fitting
parameter

B 150

Adam–Gibbs fitting
parameter

g0 10�0.7 Pa·s

Adam–Gibbs fitting
parameter

g0 e7

Glass transition
temperature of the
equilibrium liquid

Tg 305 K
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