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SUMMARY 

This paper analyses the shape effect on the tensile strength of axisymmetric rock specimens by an improved 
adaptive dynamic relaxation method. It is shown that the present approach is convenient and &cient. 
Numerical results for spheroidal specimens with different shapes reveal the variation of stress distributions 
along the loading axes and suggest that loading along the shorter principal axis is preferable in strength tests. 
Furthermore, an empirical formula based on the failure criterion of maximum tensile stress is proposed to 
evaluate the tensile strength of specimen materials. 

1. INTRODUCTION 

It is known that the failure of brittle materials such as rock and concrete shows definite 
characteristics of tensile break under a pair of compressive point loads. As early as the 193Os, 
engineers had suggested the point-loaded test to measure the tensile strength of rock and 
concrete. Because of its simplicity, this test method is now widely used in rock engineering to 
detect the tensile strength of rock. However, the preparation of strictly shaped rock specimens is 
quite difficult. Researchers hope that roughly made specimens, or even irregular ones, can be used 
directly without affecting the test results. It is therefore important that the shape effect on the 
stress distributions in different specimens should be investigated systematically. 

Sternberg and Rosenthal’ studied the theoretical problem of an elastic solid sphere subjected 
to a pair of point loads on the ends of one of its diameters. PingShong et al. (in Rreference 2) 
carried out a comparison research on cylindrical specimens using a photoelastic technique as well 
as an approximate analytical method. Peng (in Reference 2) employed a finite element method to 
calculate the stress distribution along the loading axis; he suggested that cylindrical specimens 
with a diameter-to-height ratio larger than unity should be used. In fact, the specimens tested by 
various workers are usually in the shape of a spheroid. For such cases, some researchers thought 
that according to Peng’s conclusion, it was reasonable to load along the longer principal axis of a 
spheroidal specimen. At the same time, others argued that it was better to load along the shorter 
axis of such a specimen. However, their arguments were based only on their experiences from 
experiments; no theoretical analysis was undertaken. Hence Hean et al.’ studied the problem by 
the photoelastic method. Unfortunately, their research did not lead to any new conclusions on the 
proper loading direction during tests. 

In the present paper we analyse cylindrical and spheroidal specimens with different length 
ratios of the two principal axes, a/b (see Figure 1). with the aid of an improved adaptive dynamic 
relaxation method. It is shown that the method used is convenient and efficient. Numerical results 
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reveal that the better loading direction is along the shorter principal axis of a spheroidal 
specimen. In addition, we suggest an empirical formula for engineers to evaluate the tensile 
strength of test materials. 

2. FORMULAE AND ALGORITHM 

2.1. The basic equations 

It is assumed that the specimen material is isotropic and its deformation is elastic, obeying 
Hooke’s law. We investigate the deformation of spheroidal specimens subjected to a pair of 
compressive point loads on their principal axes, and of circular cylinders loaded on their 
axisymmetric axes, as shown in Figure 1. We examine the axisymmetric problem such that we 
have corresponding equilibrium equations in cylindrical co-ordinates without body forces: 

aa,/ar+ ar,,/az +(a,- a, ) / r=o  

aa,/az + aT,,/ar+ q , / r  =O 

EE, = a, - v(a, + a,) 
EE, = a, - v ( 0 ,  +a,) 

(1) 

Consequently the constitutive equations can be written as 

EE, = a, - v(a, + a,) 
Eyrz = ‘4 1 + v )  zrz 

and the relationships between strains and displacements are expressed as 

&,= au/ar, E ,  = u/r, 6,  = aw/az 
7,. = au/az + aw/ar 

t *  

(3) 

Figure 1. Mcridiond plane view of spheroidal clpccimem and a cylindrical specimen 
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The substitution of equations (2) and (3) into (1) yields 

(as/ar)/( 1 - 2v) + v2u - u/r2 = o 
(ae/az)/(i - 2v) + v 2 w  = o (4) 

In the above equations, u and w are displacement components in the r- and z-directions 
respectively, v is Poisson's ratio and 

o = aw/az + au/ar + u / r  (5 )  
v2 = a2/ar2 +a/(&) + a2/az2 (6) 

Equations (4) are what we shall solve later in the paper. 

2.2. The algorithm for the present problem 

Several numerical methods can be used to solve the present problem. The finite element 
method (FEM) is a popular one. However, it should be pointed out that a huge computer 
memory space is needed for solving problems with serious local stress concentration, where a 
large number of elements are required. For example, the solution of deformable bodies subjected 
to concentrated loads requires a large computer or the development of complicated programming 
techniques. 

In this paper an improved dynamic relaxation method (IDRM) is applied to solve the basic 
equations (4). The method has been proved to be powerful for solving the elastic-plastic bending 
and buckling of  plate^.^*^ It is based on the fact that the static solution of a system is the steady 
state part of the transient response to step loading. By introducing a central difference scheme 
with respect to time, the iteration procedure of the method is completely explicit so that only a 
small computer memory space is needed and all calculations can be carried out by a micro- 
computer. It has been showns*6 that a better convergence rate and numerical stability will be 
obtained if the IDRM is combiped with the finite difference method (FDM) rather than the FEM. 
Moreover, with our deduced equations (4), the FDM can easily be applied with respect to spatial 
co-ordinates r and z. 

Accordingly, we first change equations (4) into the corresponding dynamic equations 

%u," + c , ~ , ,  +( ao/ar)/( 1 - 2 v )  + v2u - u/r2 =O 

m,w,,,+c,w,,+(a~/az)/(l -2v)+v2w=0 
(7) 

where the subscript 't stands for differentiation with respect to time t, m, and m, are mass factors 
and c, and c, are damping factors. It should be noted here that we are now not interested in the 
dynamic process of the system; therefore time t can be considered as pseudo-time and the mass 
and damping factors can be fictitiously chosen so that the static solution is obtained in the 
minimum number of iteration steps and the computation becomes as simple as possible. Keeping 
these points in mind and choosing c,=cm, and cw=cm,, we obtain explicit formulae for the 
solutions of u and w when the central difference scheme with respect to t is applied: 
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......... 

Here P is the time increment at the kth iteration and 

I .......... 

ru= - ( a o k / a r ) / ( l  - 2 v ) - V Z 3 + 3 / r Z  

r,,, = - ( a e k / a z ) / (  1 - 2 ~ )  - VW 
(9) 

while 6' is calculated from Rayleigh's quotient as 

where 

The elements of M are determined by the Gerschgiirin theorem on the limit circle of eigenvalues 
as 

m, 2 0-25( P )'C I kju I, m , , , 2 0 2 5 ( P ) 2 ~ j l k j w l  ( j  = u, w) (12) 

K = ar/ax (13) 

where kij ( i  = u, w; j = u, w )  are the elements of the matrix 

More details can be found in References 4 and 5. 
For the reasons stated above, we now replace equations (5 )  and (9) by their corresponding finite 

difference versions. Assuming that the position of a node in the plane of the finite difference 
scheme is described by a pair of subscripts (i, j), where i indicates the position of the node in the 
r-direction and j its position in the z-direction, as shown in Figure 2, we get 
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where 

and Ar and Az are the lengths of the finite difference mesh in the r- and z-directions respectively. 
Therefore the whole algorithm of the IDRM combined with the FDM for the present problem 

can conveniently be written as follows. 

1. Give initial values of Xo, X,: and co. 
2. Compute M and r from equations (12) and (9). 
3. If r zs0, stop; otherwise continue. 
4. Calculate X4+1'2, 8 and Xk+ '  from equations (8) and (10). 
5. Exert boundary conditions (include load and displacement conditions at boundaries). 
6. k = k + 1 and return to step 2. 

Reference 5 gave an efficient method to yield initial values required in step 1 and some other 
convergence criteria to stop the iteration. 

3. NUMERICAL RESULTS AND DISCUSSION 

Firstly, to examine the accuracy of the present method, two typical problems are solved and the 
results are compared with available analytical, numerical and experimental data. In Table I the 
results obtained using the present method are compared with Pingsong's analytical results for an 
elastic sphere. The sphere is subjected to a pair of locally uniformly distributed pressures over the 
area with 5" of central angle, as shown in Figure 3. Figure 4(a) presents the results for an elastic 
circular cylinder and Figure 4(b) for a spheroid subjected to a pair of point loads. In Figure 4 the 
data obtained from the photoelastic method3 and the finite element method' are also given for 
comparison purposes. All of these show that the new method is efficient and leads to very accurate 
predictions. 

A set of spheroidal specimens of the same size with one principal axis and a circular cylindrical 
specimen are then investigated systematically. Two compressive point loads are exerted along the 
principal axis coinciding with the z-axis as shown in Figure 1. Typical results are given in Figure 

Table I. Results for an elastic sphere ( a = f / n R 2 .  v-03) 

%/a Q,/O 

r /R  r /R Present PingSong' Present PingSong' 

04 05 0.15 0 1 5  - 1.42 - 1.43 
0 0  0 4  026 026 - 1.77 - 1.78 
0 0  0 3  038 038 -2.14 -2.13 
04 0 2  050 050 - 2.45 -213 
0 0  0 1  058 058 - 265 - 265 
00  00  061 061 - 2.73 - 2.73 
0-1 00 062 062 - 2.8 1 - 2.8 1 
0 2  0.0 063 063 - 3.09 -3.12 
0 3  00 066 066 - 3.60 - 3.68 
0 4  0 0  071 0 7  1 - 4.49 - 4.49 
0 5  0.0 076 0 7 9  - 6.00 - 6.32 



246 L. C. ZHANG 

bz  

Figure 3. Meridional plane view of a sphere subjected to local pressure 
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Figure 4. Comparison between experimental and FEM results (a= P/rrb', w=0-3): (a) ---, present results for a circular 
cylinder with a/b = 1.4/1; x , experimental results; 0, FEM results; (b) -, present results for a spheroid with a/b= 1.4/1; 

A,  experimental results; *, FEM results 
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5. Poisson’s ratio is taken to be 0.26 throughout the calculations according to the data provided 
by Reference 2. As is usual in engineering practice, negative stresses and negative tractions in the 
theory of elasticity are termed compressive in this paper. 

It is evident that along the axisymmetric axis of a specimen the shear stress q, is zero and that 
maximum values of lu,l and lull appear on the loading axis (where u,=uJ. As with the results 
shown in Figure 4, compressive vertical stress u, along the loading axis is observed. However, the 
distribution of radial stress ur is very different from the former (see Figure 5). It is positive in a 

2.5 - I I 
r:brO.S:l 

1.5- 

0.0 0.2 0.4 0.6 0.8 

zla 
0.0 0:2 0.4 0.6 0.8 

rla 

0.0 0.2 0.4 0.6 0.8 1.0 

zla 
0.0 0.2 0.4 0.6 0.8 
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zla 

Figurc 5. Distributions of radial stresses (a= P/nb’, u=O26) 
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relatively wide region near z = 0 but changes sharply to negative close to the ends of the specimen. 
Such a steep variation is due to the stress singularity at the ends of the specimen, where 
concentrated loads are exerted. For the sake of convenience, let us introduce the following 
definitions for the distribution of a, along the loading axis (i.e. the vertical axisymmetric axis of the 
specimen): 

region A-from z/a = 0 to z* = z/a la,,, , a, > 0 in this region 
region B-from z* to zA =z/alu,_o, a,>O in this region 
region C-from zA to z/a= 1, a,<O in this region. 

Obviously, region C is a narrow one; inside this region a specimen undergoes compressive stresses 
in all directions. Hence, if we think that a failure criterion of maximum tensile stress is suitable to 
evaluate the collapse strength of brittle materials,’ the specimen could not break in this region, 
since the compressive strength of these materials is much higher than their tensile one. Moreover, 
it shows that as the ratio a/b increases, the ratio (length of region C)/a becomes smaller and the 
stress variation from positive to negative in regions B and C becomes steeper. There is an 
interesting phenomenon associated with the variation of the maximum value of a,. It decreases as 
a/b increases from 0-5 but increases after a/b = 1. It is worth noting that a, varies quite smoothly 
inside regions A and B since a/b is less than unity. However, a peak appears after a/b > 1. For such 
a picture of stress distribution, our applied failure criterion indicates that a point-loaded specimen 
will break first inside a region on the loading axis just underneath the loading point, but not at the 
loading point. This is quite consistent with experimental observations. 

Obviously, a smoothly distributed tensile stress a, is favourable to the evaluation of the 
strength of a specimen, since a stress peak will bring additional complex problems. Hence this 
suggests that specimens with a/b< 1 are proper ones in practice. It then follows that a better 
loading direction in point-loaded tests is to load along the shorter principal axis. In fact, in terms 
of the convenience of loading during tests, it is also a better way. 

According to the reasoning for the evaluation of tensile strength stated above, an empirical 
formula can be obtained to relate the maximum external point load P,, and the tensile strength 
of the specimen, asl, from the present numerical analysis, i.e. 

asl/a = a (14) 
Here a = P,,/nb2 is the maximum average stress on section z =O; a is a function of the ratio a/b 
and can be expressed approximately as 

-4.664+ 3.8235exp(~,)-0.8593exp(26,)+0.0879exp(3~,)-0.0034exp(4t,) when a/b < 1 
a={ 

- 8.4209 + 6.8499 exp( r2) - 1.71 16 exp(2t2) +0-1914exp(3<,)-~0080exp(4~2) when a/b > 1 

by fitting the calculated results, where t, = b/a and r2 = a/b. Alternatively, a can be obtained from 
Figure 6. It is noted that formula (14) indicates that specimens with a/bx 1 are not appropriate if 
we prefer to test at lower P,,, for a given material (and hence a,( is a constant), since a reaches its 
minimum at a/b = 1. Moreover, Figure 6 shows that a has a high rate of change with respect to 
<,(i = 1,2) when exp(&) is less than 3.8. It follows that to get a more accurate estimate of a,,, one is 
better to choose specimens with b 2  1-3a. 

The stress distributions of circular cylindrical specimens shown in Figures 4 and 5 are very 
similar to those of spheroidal ones with a/b less than unity. This indicates that cylindrical 
specimens can also be used properly in practice. 

Finally, it should be pointed out that the present method also yields reasonable distributions of 
stresses in region C. This indicates that the method can trace problems with high stress 
concentrations well. 
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4. CONCLUDING REMARKS 

The present analysis leads to the following conclusions. 

1. For a spheroidal specimen with a/b<1, the best loading direction is along the shorter 
principal axis if the failure criterion of maximum tensile stress is applied. This is also true for 
irregular specimens with geometries similar to that of a spheroid. 

2. The new method described is convenient and efficient. The IDRM is also powerful enough 
to solve problems with higher stress concentrations. 

3. The empirical formula (14) is helpful for evaluating the tensile strength. 
Further studies are worthwhile on the effects of transverse isotropy, anisotropy, plasticity and 

the real boundary traction distributions at the ends of a specimen. 

APPENDIX : NOTATION 

length of vertical semi-axis of a spheroidal specimen or half-height of a circular 
cylinder 
length of horizontal semi-axis of a spheroidal specimen or radius of a circular cylinder 
transient damping factors in the r- and zdirections respectively, defined by equations 
(7) 
Young's modulus 
rigidity matrix, defined by equation (13) 
transient mass factors in the r- and r-directions respectively, defined by equations (7) 
defined by equation (1  1) 
compressive point load 
radial co-ordinate 
defined by equation (1  1)  
radius of a spherical specimen, as shown in Figure 3 
pseudo-time 
radial displacement, in the rdirection 
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vertical displacement, in the zdirection 
defined by equation (1 1) 
vertical co-ordinate 
shear strain 
strain components in the r-, cp- and zdirections respectively 
defined by equation (5 )  
Poisson’s ratio 
average stress, defined by Table I, Figures 4 and 5 or equation (14) 
stress components in the r-, cp- and z-directions respectively 
shear stress 
circumferential co-ordinate 

Superscript 
k at the kth iteration step 

Subscripts 
‘t 

i ,  i 
differentiation with respect to time 
node number in the plane of the finite difference scheme, defined by Figure 2 
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