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This paper uses the finite element method to analyse the generation and evolution of residual stress in
silicon-on-sapphire thin film systems during cooling. The effects of material properties, thin film struc-
tures and processing conditions, on the stress distribution were explored in detail. It was found that
under certain conditions, significant stress concentration and discontinuity can take place to initiate
crack and/or delamination in the systems. However, these can be minimised by controlling the buffer
layer thickness.

Crown Copyright � 2011 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Multi-layered thin film systems have been used in a broad
range of fields such as in optical, electronic, mechanical and protec-
tive applications (McCann et al., 2001; Mylvaganam and Zhang,
2003; Pramanik et al., 2008a; Richmond and Knudson, 1982). The
hetero-epitaxial process is used to generate multi-layered thin
films of a semiconductor material, such as silicon, on insulated sap-
phire substrates for electronic circuits. The main advantages of the
electronic circuits thus fabricated are that the highly insulating
sapphire substrate of low parasitic capacitance can provide a high-
er speed, lower power consumption, greater linearity and better
insulation (Imthurn, 2007). However, there are some problems
associated with the fabrication of such systems, e.g., the high den-
sity of crystalline defects and the complex residual stresses. The
mismatch of the lattice parameters and of the thermal expansion
properties between thin film layers and substrate materials are
the main causes of cross-layer defect development and residual
stress generation (Nakamura et al., 2004; Yamamoto et al., 1979).
Several methods have been proposed to minimise the residual
stresses caused by lattice mismatch (Lau et al., 1979), such as ion
implantation and annealing (Hull, 1999; Roulet et al., 1979; Vode-
nitcharova et al., 2007) of which the former is to introduce further
disorder in the crystalline as-deposited structure and the latter is
to regrow the crystalline layers.

Residual stresses in a thin film system are often detrimental to
its performance. If sufficiently large, they can lead to buckling,
011 Published by Elsevier Ltd. All r
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cracking, void formation and film debonding (Freund and Suresh,
2003; Mei et al., 2007; Mylvaganam and Zhang, 2003). Therefore,
a complete understanding of the residual stress generation in rela-
tion to fabrication processes is essential. Previous experimental
and analytical studies (People and Bean, 1985; Tsao et al., 1987)
have provided insight into the relationship between energies and
misfit strain and dislocations. The stress generation mechanism
in silicon-on-sapphire (SOS) thin film systems without buffer
layers has also been partially investigated. Mavi et al. (1991) used
the Raman spectroscopy to measure and compare the localised
stresses of annealed, as-deposited and phosphorous ions
implanted SOS thin films. To calculate stresses in thin film systems,
the Stoney formula (Stoney, 1909) has been commonly used
(Brown et al., 2007; Ha et al., 2006; Ngo et al., 2007; Shen et al.,
1996). Feng et al. (2008) and Ngo et al. (2008) extended this for-
mula to calculate the stresses in multi-layered thin films deposited
on a substrate subjected to non-uniform misfit strains, which
provides a way to determine experimentally the stresses in such
systems. Although the analytical and experimental methods,
including the wafer curvature (Flinn, 2008; Shen et al., 1996) and
X-ray (Flinn and Waychunas, 1988; Flinn and Chiang, 1990) meth-
ods, are useful, they have some major disadvantages: (i) they can
give only the average and local stresses in a volume; (ii) they can-
not provide the stress variation, distribution and directions in a
thin film system during fabrication; and (iii) they cannot reveal
stress discontinuity across individual layers.

The finite element (FE) method is an efficient technique for
studying complex systems (Pramanik et al., 2007, 2008), including
the study of residual stress analysis of a multi-layered thin film
system. Subramaniam and Ramakrishnan (2003) used a two-
dimensional FE calculation to understand the threshold thickness
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Fig. 2. The anisotropy of a monocrystalline sapphire (Flinn and Chiang, 1990): (a)
coordinate systems in the sapphire crystal and the R-plane, and (b) a sapphire wafer
in the R-plane and the coordinate system in the FEA simulations (Vodenitcharova,
2007).
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where misfit strain between a Si substrate and GeSi film is partially
released by the formation of misfit dislocations. Amaya-Roncancio
and Restrepo-Parra (2008) used a two-dimensional FE model to
investigate the indentation on Cr/CrN multi-layered coatings.
Wright et al. (1994) carried out a two-dimensional FE investigation
on the residual stresses in diamond thin films caused by cooling
from elevated temperatures. In their investigation, however, the
materials were assumed to be isotropic and homogeneous. Lee
and Mack (1998) also used two-dimensional FE models to calculate
the stresses in interconnection structures as a function of process
step, such as film deposition, etching, and thermal cycles. Similar
to Wright et al. (1994) they considered that all the materials are
isotropic. However, they used the strains obtained from experi-
ment using X-ray and curvature methods to induce intrinsic strains
in material layers in addition to their thermal mismatch.

As a matter of fact, the two-dimensional FE analyses summa-
rised above cannot provide an accurate understanding of the
generation and distribution of residual stresses, because semicon-
ductor materials such as mono-crystalline silicon and sapphire are
anisotropic. Unfortunately, a three-dimensional residual stress
analysis of SOS systems considering the real material properties
is unavailable. This has hindered possible optimisation of the SOS
fabrication processes with minimised residual stresses. The aim
of this paper is to carry out a three-dimensional finite element
analysis to fill the gap in this area to provide a relatively complete
figure about the residual stress generation in SOS systems.

2. Finite element modelling

2.1. Element division

A three-dimensional finite element model is shown in Fig. 1. The
shape of the model exactly resembles that of a real SOS thin film
system to capture the possible shape effect of the wafer geometry,
such as the flat edge indicating the wafer’s crystallographic plane.
This model contains a small volume of the material system at the
centre of the FE control volume, within which very fine element
mesh was used to obtain higher computation accuracy. For conve-
nience, we call this small volume the volume of interest (VOI). Out-
side the VOI, a coarser FE mesh was constructed to improve
computational efficiency. The size of the control volume was five
times greater than that of the VOI in Y- and Z-directions so that
the possible boundary effect can be avoided (Zhang and Mahdi,
1996). The dimensions of the VOI are 0.1 lm � 0.1 lm � 0.34 lm.
The thicknesses of the crystalline silicon thin film, buffer layer
and sapphire substrate are 0.1 lm, 0.04 lm and 0.2 lm, respec-
Fig. 1. The finite element mesh of the SOS system: (a) vo
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tively. The VOI contained 4249 elements whose side length (small-
est) was around 8.3E�3 lm (see Fig. 1), whereas the whole control
volume consisted of 11,376 elements. The finite element used was
the three-dimensional Solid 98 in ANSYS (ANSYS manual) which
has 10 nodes and six degrees of freedom at each node. This type
lume of interest and (b) the whole control volume.
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Table 1
Properties of materials used in finite element analysis.

Sapphire Crystalline silicon Amorphous silicon

Modulus of elasticity (GPa) Exx = 386 Exx = 79 113.2
Eyy = 381.88 Eyy = 130
Ezz = 381.88 Ezz = 130

Poison’s ratio lxy = 0.24 lxy = 0.17 0.20
lyz = 0.25 lyz = 0.28
lzx = 0.24 lzx = 0.17

Specific heat (J/kg K) 800 713 713
Thermal expansion coefficient (1/K) Parallel to R-plane = 5.04E�6 2.55E�6 2.55E�6

Normal to R-plane = 4.95E�6

Thermal conductivity (W/m K) 46 156 156
Density (kg/mm3) 3.98E�5 2.33E�5 2.33E�5

Fig. 3. The distribution of the von Mises stress in the VOI at different temperature during the cooling process (in 3600 s).
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of element has both the thermal and structural fields and coupling
capability required for the present analysis.

2.2. Properties of the SOS materials

In the fabrication of a multi-layered SOS thin film system, a sil-
icon thin film is normally deposited onto the R-plane of sapphire to
minimise the atomic lattice mismatch between the two materials
(Nakamura et al., 2004). Thus in our FE analysis, the sapphire sub-
strate considered was also along its R-plane. According to Vodenit-
charova et al. (2007), sapphire in this orientation could be
considered as an orthotropic material, whose crystalline planes re-
lated to the X-, Y- and Z-axes are illustrated in Fig. 2. The buffer
layer was considered to be isotropic due to its amorphous nature.
The elastic and thermal properties of silicon layers and sapphire
substrate are based on the work of Hull (1999) and Vodenitcharova
et al. (2007). Table 1 lists the material properties in our FE analysis.

In the analysis at all temperatures, a crystalline structure re-
mains to be crystalline and an amorphous structure maintains its
amorphous phase. The deformation of the materials was consid-
ered to be elastic and all the material layers were perfectly bonded.
A    

B    

C    

D1   
D2   
E     
F1   
F2   

G   

H   

I    

Silicon thin film 

Buffer layer 

Sapphire substrate 

Fig. 4. Indication of positions of points for studying the normal stresses on the
cross-sectional planes of the VOI.

Fig. 5. The variation of the maximum normal stress
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2.3. Boundary and loading conditions

The thermal and structural boundary conditions, such as the
annealing temperature and the buffer layer thickness, were taken
from Inoue and Yoshii (1981), Wang et al. (2000), Vodenitcharova
et al. (2007)). The rigid body motion of the control volume (model)
was eliminated by fixing some boundary finite element nodes. The
nodes at the bottom surface and at the surfaces normal to Z-axis
were fixed in X- and Z-directions. A node at the corner of the bot-
tom surface was fixed in Y-direction. No structural load was ap-
plied so that the deformation of the system was solely due to
thermal loading. The initial temperature of the whole system
was 1000 K, which was consequently cooled down to room tem-
perature (303.15 K) in 1 h. A coefficient of convection 10.45 W/
m2 K was applied to all the external surfaces of the model (Vode-
nitcharova et al., 2007). In the analysis, the thermal and structural
fields were coupled.

3. Results and discussion

During the fabrication of a silicon-on-sapphire thin film system,
cooling occurs from a high temperature to room temperature to
form defect-free crystalline silicon thin film on the amorphous sil-
icon (buffer layer). Upon cooling, however, all layers of the system
shrinks; thus, residual stresses are generated due to dissimilar
thermal expansion coefficients of the materials in different direc-
tions. Although some studies calculated the fracture and debond-
ing, they assumed that their thin film systems were of isotropic
materials and the stress distribution was equi-biaxial (Freund
and Suresh, 2003; Hutchinson, 1996). These assumptions can lead
to incorrect stress results; thus it is important to analyse correctly
using the anisotropic model described in the present paper.

3.1. Development of von Mises stress

The von Mises yield criterion, usually applied to metallic mate-
rials, has been applied to brittle materials such as silicon (Zhang
and Mahdi, 1996) and concrete (Labbane et al., 1993). Brock (Brock,
1996) utilised von Mises criterion in thermoelastic problem to de-
fine fracture for brittle materials. The structural defects consist of
stacking faults, microtwins and dislocations are generated initially
during deposition of Si thin film on sapphire (Richmond and Knud-
son, 1982). Hence, analysis of von Mises stress (in addition to nor-
es in the thin film system in the (0 0 1) plane.

es in silicon-on-sapphire thin film systems. Int. J. Solids Struct. (2011),

http://dx.doi.org/10.1016/j.ijsolstr.2011.01.010


A. Pramanik, L.C. Zhang / International Journal of Solids and Structures xxx (2011) xxx–xxx 5
mal stresses) for the current investigation will give indication of
possible fracture initiation in the multilayered thin film system.
Our analysis shows that at the start of the cooling process, the
magnitudes of residual stresses (Fig. 3(a)) are small. The highest
stress (0.33 MPa) is found in the crystalline silicon thin film near
the interface with the buffer layer. The thickness of the stress con-
tour (i.e., the thickness of the colour band for a certain range of
stress) in the silicon film increases in the positive direction of Z-
axis. In the buffer layer (amorphous silicon), the highest stress is
close to the interface with the sapphire substrate. The stress con-
tours are uniformly distributed with Y and Z. Similar to the silicon
film and buffer layer, the stresses in the sapphire substrate are in a
layered pattern. In this case, however, the stress contours vary in
all directions and create a lowest stress zone around the middle
of the VOI.

Upon further cooling, the maximum stress zone moves into the
buffer layer close to the interface with the sapphire substrate. The
pattern of the stress distribution is similar to that at the initial
cooling state although the magnitude of the stress of every contour
Fig. 6. The minimum normal stress in the

Fig. 7. Directions of the maximum no
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has increased (Fig. 3(c)). As the cooling continues, the stress level
of the contours increases (Fig. 3(d)). After cooling down to
303.18 K, the highest residual von Mises stress is found to be in
the buffer layer near the interface with the sapphire substrate,
with a magnitude of 240.6 MPa. The maximum stresses in the sil-
icon thin film, the buffer layer and the sapphire substrate are
148.33, 240.62 and 194.48 MPa, respectively. Thus the defects
may initiate at the highest stress zone if the stress is high enough.

3.2. Development of von-Mises strain

During the cooling process, the distribution of von Mises strain
is almost similar to that of von Mises stress. The maximum strain is
found to be in the buffer layer from the start of cooling. The mag-
nitude of strain increases throughout the cooling. At different loca-
tions in the sapphire substrate, the variation of strain at a given
temperature is small. At the end of the cooling, the maximum
strain is 0.002126 and is in the buffer layer near the interface with
the sapphire substrate.
thin film system in the (0 0 1) plane.

rmal stresses in the (0 0 1) plane.
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Fig. 8. Directions of the minimum normal stresses in the (0 0 1) plane.

Fig. 9. The maximum normal stresses in the thin film system in the (0 1 0) plane.

Fig. 10. The minimum normal stresses in the thin film system in the (0 1 0) plane.
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3.3. Distribution of normal stresses

In this section, the distributions and directions of the normal
stresses in the multi-layered thin film system will be discussed.
In doing so, two cross-sectional planes of the VOI are chosen based
on the XYZ coordinate system in Fig. 1, where one is (0 0 1), which
is normal to the Z-axis located at 0.05 lm from the centre of the
model, and the other is (0 1 0), which is normal to the Y-axis lo-
cated at 0.05 lm from the centre. The stresses at several points
on each of the above cross-sectional planes are analysed. The
approximate locations of these points such as A, B, C, D1, D2, E,
F1, F2, G, H and I are shown in Fig. 4. Points D (D1 – in the silicon
thin film, D2 – in the buffer layer) and F (F1 – in the buffer layer, F2
– in the sapphire substrate) are located on the interfaces of thin
film/buffer layer and buffer layer/sapphire substrate, respectively.

3.3.1. Normal stresses at the cross-section in the (0 0 1) plane
The maximum normal stress (the first principal stress) increases

with the decrease in temperature (Fig. 5). The increase of stresses is
Fig. 11. The directions of the maximum

Fig. 12. The directions of the minimum
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not uniform at all the points denoted in Fig. 4. The stress at Point A
in the silicon thin film does not have a noticeable variation during
cooling. However, the normal stress increases in the depth of the
thin film but experiences a discontinuity of a tiny decrease at the
interface with the buffer layer (from Point D1 to D2). This is caused
by the sudden property change from the thin film to the buffer
layer. Inside the buffer layer, the stress rises again until reaching
the interface with the sapphire substrate. A sudden jump of the
stress (stress discontinuity) occurs across the interface from Point
F1 to F2. Such a sharp stress change can lead to interface debonding
if the stress is sufficiently large (Zhang and Mahdi, 1996). The max-
imum stress is at Point F2 in the sapphire substrate. After passing
the F1/F2 interface, the stress decreases in the sapphire substrate.

The variation of the minimum normal stresses (the third princi-
pal stress) in the multi-layered thin film system is shown in Fig. 6.
It can be seen that they are compressive inside the silicon thin film
and buffer layer but become tensile in the sapphire substrate. The
compressive stresses toward the D1/D2 interface increase gradu-
ally, but rise sharply across the interface. An even more significant
normal stresses in the (0 1 0) plane.

normal stresses in the (0 1 0) plane.
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jump of the stresses occurs at the interface from the buffer layer to
the sapphire substrate (from Point F1 to F2). This can bring about
film buckling/wrinkling or debonding if the stresses are big enough
(Evans and Hutchinson, 2007; Litteken et al., 2005; Mogilyanskl
et al., 2000). After the F1/F2 interface, the stresses decrease inside
the sapphire substrate.

The directions and distributions of the maximum and minimum
normal stresses are presented in Figs. 7 and 8, respectively. In the
case of the maximum normal stresses, Fig. 7 shows that at different
locations they directions change, which are parallel with the X-axis
at the bottom part of the sapphire substrate but become almost
parallel with the Y-axis near the interface with the buffer layer.
The stresses in other parts of the thin film system are almost in
Fig. 13. Variation of the von Mises stress distributi
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parallel with the X-axis. The stress directions do not have notice-
able changes during the whole cooling process.

Unlike the maximum normal stresses, the directions of the
minimum normal stresses vary in cooling. Initially, stresses are
parallel with the Z-axis at the bottom part of the sapphire. Their
directions then rotate to have small angles with the Z-axis when
approaching the interface with the buffer layer (Fig. 8(a)). Upon
further cooling (Fig. 8(b)), the stresses in the sapphire tend to be
parallel with the X-axis. On the other hand, the stresses in the
thin film and buffer layer are parallel with the XY-plane at an
angle of 45� (approximately) with the X- or Y-axis. The direc-
tions of these stresses remain unchanged during further cooling
(Fig. 8(c)).
on with the buffer layer thickness at 303.41 K.
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The change of the normal stress directions at different locations
in the system may cause damages during the cooling process
(Zhang and Mahdi, 1996).

3.3.2. Normal stresses at the cross-section in (0 1 0) plane
To examine the anisotropy effect of the crystalline silicon thin

film and the sapphire substrate, the normal stress distributions
in another cross-sectional plane (0 1 0) are analysed. Figs. 9 and
10 show the maximum and minimum normal stresses in this
plane. Qualitatively, the stress variation is similar to that in the
(0 0 1) plane discussed previously. The maximum normal stresses
in plane (0 1 0) are slightly higher than those in the (0 0 1) plane.
Stress discontinuity also exists across the interfaces from F1 to
F2 (Figs. 9 and 10) and from D1 to D2 (Fig. 10).

The directions of the maximum normal stresses are parallel
with the X-axis at the bottom part of the sapphire substrate
(Fig. 11(a)) and remain unchanged until the end of the cooling pro-
cess (Fig. 11(c)); but the stresses close to the interface with the
buffer layer are not in parallel with any axis. These are in XZ-plane
with a small angle with the X-axis and the angle increases until
reaching a certain temperature. The angle then remains constant
till the end of the cooling (Fig. 11(c)).

On the other hand, at the initial stage of cooling the minimum
normal stresses at the bottom of sapphire substrate are parallel
with the Z-axis and in the neighbourhood of the interface (top)
they turn to form an angle with respect to the Z-axis (Fig. 12), until
the end of the cooling (Fig. 12(a)–(c)). The stresses in the thin film
and buffer layer are mostly parallel with the YZ-plane throughout
the cooling process (Fig. 12(a)–(c)).

3.4. Fracture and buckling of thin film

There are many investigations in thin film production and
improvement as mentioned earlier. It is well known that residual
stresses are responsible for thin film delamination and, film and/
or substrate fracture. In Freund and Suresh (2003) biaxial residual
Fig. 14. Effect of buffer layer thickness on the m
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stresses (in plane and parallel of thin film) have been correlated
with fracture energy of thin film by using Griffith’s theory of frac-
ture with a consideration of stress discontinuity at the interfaces.
Hence, residual stresses in axial directions will be discussed in this
section to get some practical insight of defect formation in thin
films.

From our discussion in previous sections, we see that axial stres-
ses increase with the decrease of temperature at every interface.
Stresses are relatively low at the top surface of the film. In Z-direc-
tion, the compressive stresses are in the range of�29.9 to�79 MPa.
Tensile and compressive stresses are noted in the range of 8.5 to
�5.3 MPa in the Y-direction. With the increase of depth of the film,
the stresses increase. At the bottom of the film, the stresses are in
the range of �58.23 to �59.7 MPa and �48.36 to �58.54 MPa in
Y- and Z-directions, respectively. On the other hand, the stresses
in the buffer layer at the interface with the thin film are in the range
of �59.02 to �61.78 MPa and �71.5 to �86.04 MPa in Y- and Z
-directions. A tensile stress (21.13–18.58 MPa) is found in the X
-direction at this interface. The stress discontinuity at the interface
between the film and the buffer layer is not significant in Y-direc-
tion but is high in Z-direction.

The stresses in the buffer layer vary significantly from its top
surface to its bottom. The compressive stresses are in the ranges
of �166.11 to �170.42 MPa and �171.12 to �181.21 MPa in
Y- and Z-directions, respectively at the bottom of the buffer layer.
In contrast, tensile stresses in the ranges of 247.23–231.02 MPa
and 211.5–178.67 MPa are noted in the Y- and Z-directions, respec-
tively, in the top surface of sapphire substrate (at the interface with
buffer layer). Tensile stresses in the range of 61.82–56.32 MPa are
found in the X-direction at interface (buffer layer/substrate). These
cause a significant stress discontinuity at the buffer layer/sapphire
interface.

From the above discussion it is clear that the thin film and buf-
fer layer are mostly in compression at room temperature. On the
other hand, sapphire substrate is under very high tension. At both
the interfaces, tensile stresses are normal to the faces. According to
aximum normal stress in the (0 0 1) plane.

es in silicon-on-sapphire thin film systems. Int. J. Solids Struct. (2011),

http://dx.doi.org/10.1016/j.ijsolstr.2011.01.010


10 A. Pramanik, L.C. Zhang / International Journal of Solids and Structures xxx (2011) xxx–xxx
Freund and Suresh (2003), these may initiate delamination at the
film/buffer layer interface and, fracture and delamination at the
buffer layer/sapphire substrate interface if stresses are high en-
ough. In addition, the stress gradient in every layers of the system
may further promote delamination (Chai, 1990).

3.5. Effect of buffer layer thickness

As mentioned earlier, an amorphous silicon layer is introduced
between the crystalline silicon film and the sapphire substrate as a
buffer layer in the thin film system to reduce the possible residual
stress magnitude. The mechanism is to use the amorphous nature
of the buffer layer to minimise the mismatch of the crystalline lat-
tice structures of different materials. Hence, the thickness of the
buffer layer must play an important role in the stress generation
and distribution in a multi-layered thin film system. In this section
we will investigate the thickness effect of the buffer layer by exam-
ining the stress variations with different thickness of 0.04, 0.06,
0.08 and 1 lm.

The distribution of the von Mises stresses in the VOI for differ-
ent thickness of buffer layer is presented in Fig. 13. It is interesting
to note that the stress contours of higher magnitudes in the thin
film move towards/into the buffer layer with the increase of the
thickness. The highest stress in the thin film is around 195 MPa
(Fig. 13(a)) when the buffer layer thickness is 0.04 lm but de-
creases to 123 MPa (Fig. 13(d)) when the buffer layer thickness be-
comes 0.1 lm.

The maximum normal stresses at Points D1, D2, F1 and F2
(Fig. 4) for different buffer layer thicknesses at (0 0 1) plane are
shown in Fig. 14. At Points D1 and D2 (interface between silicon
thin film and buffer layer), there is a significant decrease of stresses
with the increase of the buffer layer thickness after complete cool-
ing. However, the influence of the buffer layer thickness on the
stresses is negligible when the temperature is still high (e.g., at
979.42 K at the initial stage of cooling). At the interface between
the buffer layer and the sapphire substrate (Points F1 and F2),
the maximum normal stress decreases with the increase of the buf-
fer layer thickness after complete cooling.

The variation of the minimum normal stresses at Points D1, D2,
F1 and F2 with different buffer layer thicknesses is similar to that
of maximum normal stresses described above.
4. Conclusions

The major conclusions from this study are as follows:

(a) The von Mises stress concentration in the buffer layer near
the interface with the sapphire substrate may initiate
fracture.

(b) The stress discontinuity across the interface between the
buffer layer and the sapphire substrate is more significant
than that across the interface between the silicon thin film
and the buffer layer. This indicates that defects are more
likely to be initiated at the interface between the buffer layer
and the sapphire substrate.

(c) The sharp changes of the tensile residual stresses at the
interfaces can cause catastrophic failure of thin films if the
magnitudes of the stresses are big enough. The compressive
stresses in different layers may cause film buckling/wrin-
kling if they reach a threshold value.

(d) The change of directions of the normal stresses in the system
may cause damages in the middle of the processing.

(e) The tensile and compressive residual stresses in a thin film
can be greatly reduced when the buffer layer thickness is
increased.
Please cite this article in press as: Pramanik, A., Zhang, L.C. Residual stress
doi:10.1016/j.ijsolstr.2011.01.010
Acknowledgements

This work was supported by an ARC Linkage grant and Sapph-
icon Semiconductor. The contribution by A. Brawley, P. Atanacko-
vic and S. Duvall is very much appreciated.
References

Amaya-Roncancio, S., Restrepo-Parra, E., 2008. Finite elements modeling of
multilayers of Cr/CrN. Journal of Microelectronics 39, 1336–1338.

ANSYS reference manual, Release 10, ANSYS, Inc., Southpointe 275 Technology
Drive Canonsburg, PA 15317, United States. <http://www.ansys.com>.

Brock, L.M., 1996. Effects of thermoelasticity and a von Mises condition in rapid
steady-state quasi-brittle fracture. International Journal of Solids and Structures
33 (28), 4131–4142.

Brown, M.A., Rosakis, A.J., Feng, X., Huang, Y., Üstündag, E., 2007. Thin film/substrate
systems featuring arbitrary film thickness and misfit strain distributions. Part II:
Experimental validation of the non-local stress/curvature relations.
International Journal of Solids and Structures 44, 1755–1767.

Chai, H., 1990. Three-dimensional fracture analysis of thin-film debonding.
International Journal of Fracture 46, 237–256.

Evans, A.G., Hutchinson, J.W., 2007. The mechanics of coating delamination in
thermal gradients. Surface & Coatings Technology 201, 7905–7916.

Feng, X., Huang, Y., Rosakis, A.J., 2008. Multi-layer thin films/substrate system
subjected to non-uniform misfit strains. International Journal of Solids and
Structures 45, 3688–3698.

Flinn, P.A., 2008. Thin films: stress measurement techniques. Encyclopaedia of
Materials: Science and Technology 9274, 9279.

Flinn, P.A., Chiang, C., 1990. X-ray diffraction determination of the effect of various
passivations on stress in metal films and patterned lines. Journal of Applied
Physics 67, 2927–2931.

Flinn, P.A., Waychunas, G.A., 1988. A new X-ray diffractometer design for thin-film
texture, strain, and phase characterization. Journal of Vacuum Science &
Technology, B: Microelectronics Processing and Phenomena 6, 1749–1755.

Freund, L.B., Suresh, S., 2003. Thin film materials: stress, defect formation and
surface evolution. Cambridge University Press, Cambridge, UK; New York.

Ha, P.C.T., McKenzie, D.R., Bilek, M.M.M., Doyle, E.D., McCulloch, D.G., Chu, P.K.,
2006. Control of stress and delamination in single and multi-layer carbon thin
films prepared by cathodic arc and RF plasma deposition and implantation.
Surface & Coatings Technology 200, 6405–6408.

Hull, R., 1999. Properties of Crystalline Silicon. INSPEC, The Institution of Electrical
Engineers, London.

Hutchinson, J.W., 1996. Mechanics of Thin Films and Multi-layers: Course Notes.
Technical University of Denmark, Technical Report.

Imthurn, G., 2007. The History of Silicon-on-Sapphire. Available from: <http://
www.peregrine-semi.com/articles/History_SOS_73-0020-02.pdf>.

Inoue, T., Yoshii, T., 1981. Crystalline quality improvement of SOS films by Si
implantation and subsequent annealing. Nuclear Instruments and Methods
182–183, 683–690.

Labbane, M., Saha, N.K., Ting, E.C., 1993. Yield criterion and loading function for
concrete plasticity. International Journal of Solids and Structures 30 (9), 1269–
1288.

Lau, S.S., Matteson, S., Mayer, J.W., Revez, P., Gyulai, J., Roth, J., Sigmon, T.W., Cass, T.,
1979. Improvement of crystalline quality of epitaxial Si layers by ion-
implantation techniques. Applied Physics Letters 34, 76.

Lee, J., Mack, A.S., 1998. Finite element simulation of a stress history during the
manufacturing process of thin film stacks in VLSI structures. IEEE Transactions
on Semiconductor Manufacturing 11 (3), 458–464.

Litteken, C.S., Strohband, S., Dauskardt, R.H., 2005. Residual stress effects on plastic
deformation and interfacial fracture in thin-film structures. Acta Materialia 53,
1955–1961.

Mavi, H.S., Shukla, A.K., Jain, K.P., Abbi, S.C., Beserman, R., 1991. Raman study of
stress-relieved silicon-on-sapphire films prepared by cw-laser annealing.
Journal of Applied Physics 69 (11), 7815–7819.

McCann, M.J., Catchpole, K.R., Weber, K.J., Blakers, A.W., 2001. A review of thin-film
crystalline silicon for solar cell applications. Part 1: Native substrates. Solar
Energy Materials & Solar Cells 68, 135–171.

Mei, H., An, J.H., Huang, R., Ferreira, P.J., 2007. Finite element modeling of stress
variation in multilayer thin-film specimens for in situ transmission electron
microscopy experiments. Journal of Materials Research 22 (10), 2737–2741.

Mogilyanskl, D., Gartstein, E., Metzger, H., 2000. Characterization of the interface
strain/stress state in Si-on-sapphire heterostructure. Materials Science Forum
347–349, 568–573.

Mylvaganam, K., Zhang, L.C., 2003. Residual stress induced atomic scale buckling of
diamond carbon coatings on silicon substrate. Thin Solid Films 425, 145–
149.

Nakamura, T., Matsuhashi, H., Nagatomo, Y., 2004. Silicon on Sapphire (SOS) Device
Technology, Oki Technical Review. Technologies that Support the e-Society
71(200)(4). <http://www.oki.com/en/otr/200/downloads/otr-200-R18.pdf>.

Ngo, D., Feng, X., Huang, Y., Rosakis, A.J., Brown, M.A., 2007. Thin film/substrate
systems featuring arbitrary film thickness and misfit strain distributions. Part I:
Analysis for obtaining film stress from non-local curvature information.
International Journal of Solids and Structures 44, 1745–1754.
es in silicon-on-sapphire thin film systems. Int. J. Solids Struct. (2011),

http://www.ansys.com
http://www.peregrine-semi.com/articles/History_SOS_73-0020-02.pdf
http://www.peregrine-semi.com/articles/History_SOS_73-0020-02.pdf
http://www.oki.com/en/otr/200/downloads/otr-200-R18.pdf
http://dx.doi.org/10.1016/j.ijsolstr.2011.01.010


A. Pramanik, L.C. Zhang / International Journal of Solids and Structures xxx (2011) xxx–xxx 11
Ngo, D., Feng, X., Huang, Y., Rosakis, A.J., 2008. Multilayer thin films/substrate
system with variable film thickness subjected to non-uniform misfit strains.
Acta Materialia 56, 5322–5328.

People, R., Bean, J.C., 1985. Calculation of critical layer thickness versus lattice
mismatch for GexSi1�x/Si strained-layer heterostructures. Applied Physics
Letters 47, 322–324.

Pramanik, A., Zhang, L.C., Arsecularatne, J.A., 2007. An FEM investigation into the
behaviour of metal matrix composites: tool-particle interaction during
orthogonal cutting. International Journal of Machine Tools & Manufacture 47,
1497–1506.

Pramanik, A., Neo, K.S., Rahman, M., Li, X.P., Sawa, M., Maeda, Y., 2008a. Journal of
Materials Processing Technology 208, 400–408.

Pramanik, A., Zhang, L.C., Arsecularatne, J.A., 2008b. Deformation mechanisms of
MMCs under indentation. Composites Science and Technology 68, 1304–1312.

Richmond, E.D., Knudson, A.R., 1982. New developments in the defect structure of
implanted furnace-annealed silicon on sapphire. Thin Solid Films 93, 347–351.

Roulet, M.E., Schwob, P., Affolter, K., Luthy, W., Yon Atlmen, M., Fallavier, M.,
Mackowski, J.M., Nicolet, M.A., Thomas, J.P., 1979. Laser annealing of silicon on
sapphire. Journal of Applied Physics 50, 5536.

Shen, Y.L., Suresh, S., Blech, I.A., 1996. Stresses, curvatures, and shape changes
arising from patterned lines on silicon wafers. Journal of Applied Physics 80,
1388–1398.
Please cite this article in press as: Pramanik, A., Zhang, L.C. Residual stress
doi:10.1016/j.ijsolstr.2011.01.010
Stoney, G.G., 1909. The tension of metallic films deposited by electrolysis.
Proceedings of the Royal Society of London A82, 172–175.

Subramaniam, A., Ramakrishnan, N., 2003. Analysis of thin film growth using finite
element method. Surface and Coatings Technology 167, 249–254.

Tsao, J.Y., Dodson, B.W., Picraux, S.T., Cornelison, D.M., 1987. Critical stresses for
SixGe1�x strained-layer plasticity. Physical Review Letters 59, 2455–2458.

Vodenitcharova, T., Zhang, L.C., Zarudi, I., Yin, Y., Domyo, H., Ho, T., Sato, M., 2007.
The effect of anisotropy on the deformation and fracture of sapphire wafers
subjected to thermal shocks. Journal of Materials Processing Technology 194
(1–3), 52–62.

Wang, Q., Nie, J., Yu, F., Liu, Z., Yu, Y., 2000. Improvement of thin silicon on sapphire
(SOS) film materials and device performances by solid phase epitaxy. Materials
Science and Engineering B72, 189–192.

Wright, J.K., Williamson, R.L., Maggs, K.J., 1994. Finite element analysis of the
effectiveness of interlayers in reducing thermal residual stresses in diamond
films. Materials Science and Engineering A 187, 87–96.

Yamamoto, Y., Wilson, I.H., Itoh, T., 1979. Gettering effect by oxygen implantation in
SOS. Applied Physics Letters 34, 403.

Zhang, L.C., Mahdi, M., 1996. The plastic behaviour of silicon subjected to micro-
indentation. Journal of Material Science 31, 5671–5676.
es in silicon-on-sapphire thin film systems. Int. J. Solids Struct. (2011),

http://dx.doi.org/10.1016/j.ijsolstr.2011.01.010

	Residual stresses in silicon-on-sapphire thin film systems
	Introduction
	Finite element modelling
	Element division
	Properties of the SOS materials
	Boundary and loading conditions

	Results and discussion
	Development of von Mises stress
	Development of von-Mises strain
	Distribution of normal stresses
	Normal stresses at the cross-section in the (001) plane
	Normal stresses at the cross-section in (010) plane

	Fracture and buckling of thin film
	Effect of buffer layer thickness

	Conclusions
	Acknowledgements
	References


