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Abstract: This paper developed an effective multiscale method for analysing 
the deformation of NanoElectroMechanical (NEM) switches based on carbon 
nanotubes. The switches were simplified to beam systems with loads calculated 
from three-coupled energy domains: the electrostatic energy domain, the 
elastostatic energy domain, and the van der Waals energy domain. A meshless 
formulation was then used to discretise the switches to establish the non-linear 
system of equations for solution. The pull-in voltage characteristics of the 
fixed-fixed and cantilever nanoswitches based on the single-walled nanotube 
and the double-walled nanotube are analysed. A parametric comparison with 
the results in the literature showed that the method developed in this paper is 
very effective. 
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1 Introduction 

Manufacturing has always been a major wealth-creating sector in developed economies 
and will be the cornerstone of long-term economic growth in the world. The design and 
manufacturing of MicroElectroMechanical Systems (MEMS) have become very 
important (Bhushan, 2005) because of the accelerating role of MEMS in automotive 
systems (transducers and accelerometers), avionics and aerospace (microscale actuators 
and sensors), manufacturing and fabrication (micro smart robots), medicine and 
bioengineering (DNA and genetic code analysis and synthesis, drug delivery, diagnostics 
and imaging), and so on. The increasing interest in nanotechnology has also influenced 
the development of MEMS. A new class of MEMS devices being developed at the 
nanoscale is called NanoElectroMechanical Systems (NEMS). The NEMS device is 
about a thousand times smaller than MEMS, and has a promising potential in practical 
applications in, for example, random access memories (Rueckes et al., 2000), 
nanotweesers for miniaturised robots (Kim and Lieber, 1999), and nanoswitches 
(Baughman et al., 1999), where carbon nanotubes are often used because of their 
excellent electronic, chemical and mechanical properties (Mylvaganam and Zhang, 
2004a,b). In these NEMS, the carbon nanotube-based switch is a very important group of 
NanoElectroMechanical (NEM) devices due to its wide practical applications. 

Due to their smaller dimensional scale, experiments on nanoswitches are costly. 
Numerical simulations have therefore become an important tool for their analysis and 
design. A common and powerful approach related to nanoscale simulation is the 
Molecular Dynamics (MD) (Dequesnes et al., 2004; Rapaport, 1995), which can be used 
to simulate the static and dynamic behaviour of nanoswitches. However, MD simulations 
require the computation of many atoms in the system, making it unrealistic for studying 
large and complex systems. To overcome this difficulty, an effective alterative approach 
should be developed. 

In recent years, a group of advanced numerical techniques, the meshless methods 
(Gu, 2005; Liu, 2002; Liu and Gu, 2005), have been developed and achieved remarkable 
progress for the continuum analysis. The meshless methods using various weak-forms of 
the Ordinary Differential Equations (ODEs) or the Partial Differential Equations (PDEs) 
of the problems, for example, the Element-Free Galerkin (EFG) method (Belytschko  
et al., 1994), the Meshless Local Petrov-Galerkin (MLPG) method (Atluri and Zhu, 
1998), and the Local Radial Point Interpolation Method (LRPIM) (Gu and Liu, 2001; Liu 
and Gu, 2001), have shown many distinguished advantages in the applications for 
engineering and sciences. These advantages include no mesh generation, high accuracy, 
easy for adaptive analysis and so on. Especially, the meshless methods perform better in 
solving some non-linear, large deformation, and multiple domains coupled problems, 
which are usually difficult to be solved using the traditional numerical methods, for 
example, the Finite Element Method (FEM). 
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This paper will develop a new method for characterising the deformation of two 
typical NEM switches, as shown in Figures 1 and 2, whose key components are a  
Single-Walled carbon NanoTube (SWNT) or a Double-Walled carbon NanoTube 
(DWNT) and a fixed ground plane. When a potential difference is created between the 
nanotube and the ground plane, electrostatic charges, which will lead to electrostatic 
force, are introduced. Meanwhile, elastostatic and van der Waals forces coexist. Under 
an applied voltage, an equilibrium position of the tube is defined by the balance of the 
elastostatic, electrostatic and the van der Waals forces. To simulate these NEM switches, 
a parameterised continuum model will be used, in which the Young’s modulus and 
moment of inertia of the SWNT will be obtained by the analytical method based on the 
values obtained by Vodenitcharova and Zhang (2003), and the product of Young’s 
modulus and moment of inertia of the DWNT will be determined by MD simulation with 
a linear deflection approximation. The switch will be simplified to a beam system, and 
the loading be calculated from three coupled energy domains: the electrostatic energy 
domain, the elastostatic energy domain, and the van der Waals energy domain.  
A meshless formulation (Gu and Liu, 2001; Liu and Gu, 2005) will then be developed to 
discretise the domain of the switch to establish the non-linear equations for deformation 
analysis. The pull-in voltage characteristics of fixed-fixed and cantilever nanoswitches 
based on the SWNT and the DWNT are analysed. 

Figure 1 A fixed-fixed NEM based switch (a) voltage V = 0 and (b) voltage V > 0 

 

Figure 2 A cantilever NEM based switch (a) voltage V = 0 and (b) voltage V > 0 

 

2 Modelling 

2.1 The elastostatic domain 

When the deflection of the nanotube is small and its cross-section shape change during 
bending is negligible, the nanotube in the switch can be simplified to a beam structure. 
According to the continuum theory, the governing equation for the beam can be written 
as (Zienkiewicz and Taylor, 2000) 
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4

4

d w
EI f

dx
=  (1) 

where w is the deflection of the nanotube, E is its Young’s modulus, I is its moment of 
inertia, and f is the force per unit length on the tube. 

For a tube shown in Figures 1 and 2, there are four boundary conditions, two at each 
end. The boundary conditions are given at the global boundary, Γ, as 

(0) 0, (0) 0, ( ) 0, ( ) 0, for a fixed-fixed tubew w l lθ θ= = = =  (2) 

(0) 0, (0) 0, ( ) 0, ( ) 0, for a cantilever tubew M l Q lθ= = = =  (3) 

where θ, M and Q denote the deflection slope, the bending moment and the shear force, 
respectively, and l is the length of the tube. 

2.2 The electrostatic force 

The electrostatic force can be computed by using a standard capacitance model (Jackson, 
1998), in which the nanotube is considered as a perfect cylindrical conductor.  
This implies that the potential is constant along the length of the tube. The capacitance 
per unit length for the cylindrical beam over a conductive ground plane is given by 
Jackson (1998) and Dequesnes et al. (2004) 

( )
0

2

1 1

2
( )

log 1 / / 1 1
C r

g r g r

πε
=

 + + + −  

 (4) 

where ε0 is the permittivity at vacuum, g is the gap between the nanotube and ground 
plane, and r1 is the radius of the conductor (i.e. the exterior radius of the tube). These 
parameters are more clearly defined in Figures 3 and 4. 

Figure 3 A SWNT over a graphite ground plane 
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Figure 4 A DWNT over a graphite ground plane 

 

The electrostatic energy per unit length is given by 

2
elec

1
( )

2
C r VΦ =  (5) 

where V is the voltage applied. Therefore, the electrostatic force per unit length can be 
written as 

( ) ( )
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     + +  = − + +     
       

 (6) 

2.3 The van der Waals interaction 

The van der Waals force can be computed through the van der Waals energy, which 
describes the interaction of nanotube with ground plane, using an atomistic potential. The 
following Lennard-Jones (L-J) potential is used in this paper (Rapaport, 1995) 

( )
12 6

12 6
612

12 6 12 6

4 4
4ij

ij ij ij ij ij ij

CCσ σ εσ εσε
    
 Φ = − = − = −           

r
r r r r r r

 (7) 

where C12

 and C6

 are constants characterising the interactions between two atoms. In the 
L-J potential, there are attractive and repulsive parts. The repulsive part decays very fast 
and plays an important role only when the nanotube is to contact with the ground. Since 
the major aim of this paper is to calculate the pull-in voltages, which leads to a deflection 
before contacting, it is reasonable to only consider the attractive part in the calculation of 
the van der Waals energy W using a pair-wise summation over all the atoms. As shown 
in Figure 3, when a SWNT interacts with m layers of grapheme in the substrate, and if 
the interlayer distance of the grapheme is d, the van der Waals force of the SWNT can be 
written as (Dequesnes et al., 2003) 
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σ π

=

 + + + + + = −
+

∑  (8) 

where σ0 is the graphite surface density, gi = g + d × (i−1), and r1 is the radium of the 
SWNT. 

Similarly, as shown in Figure 4, when a DWNT interacts with m layers of grapheme 
in the substrate, and if the interlayer distance of the grapheme is d, the van der Waals 
force of the DWNT can be written as (Dequesnes et al., 2003) 
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+
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+ 

∑
 (9) 

where r0 and r1 are the radii of the inner and outer nanotubes of the DWNT. 
The total force in Equation (1), f, is therefore 

1 2f f f= +  (10) 

3 Young’s modulus and moment of inertia 

To use the continuum model, Young’s modulus, E, and moment of inertia, I, of the 
nanotube must be determined. There have been some confusions in determining  
the Young’s modulus (Wong et al., 1997) of a nanotube due to the dilemma of the 
effective thickness, h. For example, some studies assumed that a nanotube was a solid 
cylinder. Others considered that h was equal to the interplanar spacing of graphite layer, 
that is, hg = 3.4 Å. Therefore, the equivalent Young’s modulus calculated based on these 
h values varies. Vodenitcharova and Zhang (2003) clarified the dilemma and formulated 
the effective thickness. They pointed out that the equivalent thickness of a SWNT is 
0.617 Å, which is 43.8% of the theoretical diameter of a carbon atom, and its Young’s 
modulus is 4.88 TPa. 

3.1 SWNT  

The values of E and h obtained by Vodenitcharova and Zhang (2003) was used for the 
SWNT in this paper, that is, Young’s modulus E = 4.88 TPa. The moment of inertia, I, 
can be obtained based on the equivalent thickness h 

4 4

4 2 2

h h
I R R

π     = + − −    
     

 (11) 

where h = 0.617 Å is the equivalent thickness (Vodenitcharova and Zhang, 2003) and  
R is the radius of the tube’s mid-surface, that is, the one through the centre of the carbon 
atoms. 
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3.2 DWNT 

There is not a rational value of wall-thickness for a DWNT that can be used to determine 
its E and I. Since this study considers only the linear elasticity of the DWNT with small 
deflection, its E and I are therefore constants. Hence, the linear deflection approximation, 
in which the peak deflection of the tube is considered as a linear function of the applied 
load, can be used to get the product of E and I. The peak deflections for different 
loadings are first obtained by the MD simulation, and then using the classic beam theory 
to calculate EI. That is, for a cantilever or fixed-fixed tube, if the peak deflection is wd 
(obtained by MD simulation (Dequesnes et al., 2003; Mylvaganam and Zhang, 2004c) 
when the force is f, we can simply obtain EI as 

4

, for a cantilever tube
8 d

l f
EI

w
=  (12) 

=
4

, for a fixed-fixed tube
384 d

l f
EI

w
 (13) 

where l is the length of the tube. To ensure the accuracy, various loading conditions can 
be used to get several values of EI, and the average of these values EI can be taken as the 
equivalent EI. 

4 Local meshless formulation 

A local weak form of the differential Equation (1), over a local domain Ωq bounded by 
Γq, can be obtained using the local weighted residual method (Gu and Liu, 2001; Liu and 
Gu, 2005) 

( )'''' d 0
q

w EIw f x
Ω

− =∫  (14) 

where w  is the weight function. The first term on the left hand side of Equation (14)  
can be integrated by parts to become 

( ) [ ] [ ]d 0
q qq

EIw w wf x nEIw w nEIww
Γ ΓΩ

′′ ′′ ′ ′′ ′′′− − + =∫  (15) 

where n  is the unit outward normal to domain Ωq. 
An arbitrary shape quadrature domain can be used, such as a linear support domain 

for one-dimensional problems. It can be found that the boundary Γq for the support 
domain usually comprises five parts: the internal boundary Γqi, the boundaries Γqw, Γqθ, 
ΓqM, and ΓqQ, over which the essential boundary conditions w, θ and natural boundary 
conditions M, Q are specified. The boundaries Γqw with ΓqQ and Γqθ with ΓqM are mutually 
disjoint. Imposing the natural (force) boundary condition given in Equations (2) and (3), 
we obtain: 

( ) [ ]

[ ] [ ] [ ]
θΓΓ Γ

Ω

Γ Γ Γ

′′ ′′ ′ ′ ′′  − − − −   

′′′ ′ ′′ ′′′+ − + =

∫ d

0

qqM qQ

q

qw qi qi

EIw w wf x nMw nQw nEIw w

nwEIw nw EIw nwEIw
 (16) 
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If the value and the derivatives of the weight function w  are taken to be zero at Γqi, the 
last two terms in Equation (16) vanish. 

Gauss quadrature is needed to evaluate the integrations in Equation (16). As shown in 
Figure 5, for a field node xI, a local quadrature cell Ωq is needed for the Gauss 
quadrature; for each Gauss quadrature point xQ, the meshless shape functions are 
constructed to obtain the integrand. Therefore, for a field node xI, there exists three local 
domains: 

• the local quadrature domain Ωq (size rq) 

• the local weight (test) function domain Ωw where w i ≠ 0 (size rw) and 

• the local support domain Ωs for xQ (size rs). 

Figure 5 The weight domain Ω
v
 and quadrature domain Ω

q 
for node I; support  

domain Ω
s
 for Gauss integration point x

Q
 

 

These three local domains are arbitrary as long as the condition rq ≤ rw is satisfied.  
It has been noted that when an appropriate weight function is used, the local weak form, 
Equation (16), can be simplified because the terms along the internal boundary vanish. 
Hence, for simplicity, we can use rq = rw. 

The problem domain Ω is represented by properly scattered field nodes, and the 
Hermite point interpolation (Liu and Gu, 2005) is used to approximate the value of a 
point x 

T T( ) ( ) ( )ww x x xθ= +Φ w Φ θ (17) 

where w and θ denote the nodal deflections and slopes, respectively, and Φw(x) and  
Φθ   (x) are shape functions for deflection and slope, respectively. 

As this local meshless method is regarded as a weighted residual method, the  
weight function plays an important role in the performance of the method. It can be 
found that a weight function with the local property will yield better results, such as  
the quartic spline function. Following the idea of the Galerkin FEM, the weight function 
w  can be taken as 

( ) T T( ) ( )Q ww x x xθ= +ψ α ψ β  (18) 

where α and β denote the fictitious nodal coefficients, Ψw and Ψθ are constructed using 
meshless shape functions. It should be noted that the support domain used to construct 
Ψw and Ψθ can be independent of the support domain used to construct Φw and Φθ. 
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Substituting Equations (17) and (18) into the local weak form Equation (16) for all 
nodes leads to the following discrete equations 

e =Kw f  (19) 

It can be found from Equations (6), (8) and (9) that f is non-linear, because it is  
the function of the deflection. The non-linear force f leads to the non-linearity of 
Equation (19), and thus an iteration technique, the Newton-Raphson method in the 
present case, is required for its solution. The simple iteration criteria is defined as 

( )
( )

21

1

21

1

n i i
j jj

n i
jj

w w
e

w

+
=

+
=

−
≤

∑
∑

 (20) 

where n is the number of nodes used, i
jw  and 1i

jw +  are the deflections of the ith and the 

(i+1)th iteration steps, respectively, and e is a specified accuracy tolerance. 

5 Results and discussions 

5.1 A cantilever DWNT-based switch 

A cantilever switch is considered to consist of a DWNT of 50 nm in length, with  
r1 = 1 nm, and r0 = 0.665 nm. The initial gap between the DWNT and the ground plane is 
4 nm. There are 30 sheets of grapheme for the ground plane, and the inter-layer distance 
of graphite, d, is 0.335 nm. The equivalent product of EI is 7.58 × 10−25m2N and ε0 = 
8.854 × 10−12C2N/m2 (Jackson, 1998). 

To analyse this switch by the above meshless formulation, 41 regularly distributed 
field nodes are used. It can be found that with the increase of the applied voltage, the 
deflection of the DWNT increases, and the gap between the tube and the ground  
plane decreases. When the voltage increases to a certain value, the tube becomes unstable 
suddenly and the free end of the tube will touch the bottom plane. This process is defined 
as the pull-in behaviour (Wang et al., 2004) and the corresponding voltage value is called 
the quasi-static critical pull-in voltage, at which the deflection of the tube tip equals the 
initial gap. In the practical applications of NEM switches, the critical pull-in voltage is 
one of the most important parameters. 

Figure 6 demonstrates the result of the deflection of this DWNT tube tip under 
different voltages. It can be seen that the critical pull-in voltage is 0.474 volt. Compared 
with the same value, 0.5 volt, obtained by an analytical method (Dequesnes et al., 2003; 
Osterberg, 1995), the presented method gives a very good result. It should be mentioned 
here that the above model is only valid when the tube deflection is small. However, it can 
be seen from Figure 6 that the model is accurate up to the critical pull-in voltage. The 
sharp increase of the tube deflection beyond the critical pull-in voltage, as shown in 
Figure 6, is caused by the sharp increase of the forces, as demonstrated in Figure 7. 
Because of the decrease of the gap between the DWNT and the ground plane, both the 
electrostatic and van der Waals forces increase significantly, which pull the tube down 
suddenly. To simulate the deflection process after the critical pull-in voltage, a 
geometrically non-linear model must be developed. 



   

 

   

   
 

   

   

 

   

    A simple method for analysing the deformation 219    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 6 The gap under different voltages for the cantilever DWNT based switch 

 

Figure 7 Forces versus gaps for the cantilever DWNT based switch 

 

Figure 8 demonstrates the relationship between the critical pull-in voltage and the initial 
gap for this switch. It clearly shows that the critical pull-in voltage increases with the 
increase of the initial gap. When the initial gap is larger than 6 nm, the slope for  
the curve changes very slowly, because with a large gap the effect of the van der Waals 
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force is negligible. When the gap is very small, on the other hand, the van der Waals 
force will play a key role. At a critical gap value (g ≈ 3.5 nm in the present case), pull-in 
will occur even without an external voltage. 

Figure 8 Pull-in voltages versus gaps for the cantilever DWNT based switch 

 

A fixed-fixed switch based on the same DWNT is also simulated. All computational 
parameters are the same as those listed above. The critical pull-in voltage obtained now 
becomes 6.15 V, which is much higher than that of the cantilever switch. This is 
understandable because the fixed-fixed boundary conditions make the tube much stiffer. 

5.2 A fixed-fixed SWNT-based switch 

A fixed-fixed SWNT-based switch is also considered to consist of a SWNT of 20.7 nm 
in length, with r1 = 0.665 nm. The initial gap between the DWNT and the ground plane is 
2 nm. There are 40 sheets of grapheme for the ground plane, and the inter-layer distance 
of graphite, d, is 0.335 nm. The permittivity of vacuum equivalent ε0 is 8.854 × 
10−12C2N/m2. Using Equation (11) and the value E = 4.88 TPa with effective thickness  
h = 0.617 Å (Vodenitcharova and Zhang, 2003), we get EI = 2.5 × 10−25m2N, which is 
very close to the result 2.3 × 10−25m2N (Dequesnes et al., 2004) obtained by MD. 

To analyse this switch by the above meshless formulation, 21 regularly distributed 
field nodes are used. With the increase of the applied voltage, the deflection of the 
SWNT increases, and the gap between the tube and the ground plane decreases. When 
the voltage increases to a certain value, the tube also becomes unstable suddenly, which 
is similar to the switch in the first example, and the middle of the tube will touch the 
bottom plane. The corresponding quasi-static critical pull-in voltage can be obtained 
from Figure 9, which demonstrates the result of the deflection of the tube tip under 
different voltages. For this switch, it can be found that the critical pull-in voltage  
is 9.07 vol. 
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Figure 9 The gap under different voltages for the fixed-fixed SWNT based switch 

 

6 Conclusion 

This paper has analysed the deformation of some NEM switches using the meshless 
technique based on a parameterised continuum model. The pull-in voltage characteristics 
of fixed-fixed and cantilever nanoswitches based on the single-walled nanotube and the 
double-walled nanotube are studied. From studies of this paper, the following 
conclusions can be drawn: 

1 The proposed technique is very simple and effective to give satisfactory results 
for NEM switches. 

2 The coupling of elastostatic and van der Waals forces is important when the gap 
between the tube and the ground is not too small but not too big. 

3 The presented model is only valid when the tube deflection is small and it is 
usually accurate up to the critical pull-in voltage. However, to analyse the 
deflection process after the critical pull-in voltage, a geometrically non-linear 
model must be developed. 

Acknowledgement 

This work was supported by an Australian Research Council (ARC) Discovery Grant.  

References 

Atluri, S.N. and Zhu, T. (1998) ‘A new meshless local petrov-galerkin (MLPG) approach in 
computational mechanics’, Computational Mechanics, Vol. 22, pp.117–127. 

Baughman, R.H., et al. (1999) ‘Carbon nanotube actuators’, Science, Vol. 284, pp.1340–1344. 



   

 

   

   
 

   

   

 

   

   222 Y. Gu and L. Zhang    
 

    
 
 

   

   
 

   

   

 

   

       
 

Belytschko, T., Lu, Y.Y. and Gu, L. (1994) ‘Element-free galerkin methods’, International Journal 
for Numerical Methods in Engineering, Vol. 37, pp.229–256. 

Bhushan, B. (2005) Nanotribology and Nanomechanics, Berlin: Springer. 

Dequesnes, M., Rotkin, S.V. and Aluru, N.R. (2003) ‘Calculation of pull-in voltages for  
carbon-nanotube-based nanoelectromechanical switches’, Nanotechnology, Vol. 13,  
pp.120–131. 

Dequesnes, M., Tang, Z. and Aluru, N.R. (2004) ‘Static and dynamic analysis of carbon  
nanotube-based switches’, Journal of Engineering Materials and Technology, Vol. 126, 
pp.230–237. 

Gu Y.T. (2005) ‘Meshfree methods and their comparisons’, International Journal of 
Computational Methods (IJCM), in Y.T. Gu and W. Kanok-Nukulchai (Eds). Vol. 2, No. 4, 
pp.477–515. 

Gu, Y.T. and Liu, G.R. (2005) ‘A local point interpolation method for static and dynamic analysis 
of thin beams’, Computer Method in Applied Mechanics Engineering, Vol. 190,  
pp.5515–5528. 

Jackson, J.D. (1998) Classical Electrodynamics, 3rd edition, NewYork: Wiley. 

Kim, P. and Lieber, C.M. (1999) ‘Nanotube nanotweezers’, Science, Vol. 286, pp.2148–2150. 

Liu, G.R. (2002) Mesh Free Methods: Moving Beyond the Finite Element Method, USA:  
CRC press. 

Liu, G.R. and Gu, Y.T. (2001) ‘A local radial point interpolation method (LR-PIM) for  
free vibration analyses of 2-D solids’, Journal of Sound and Vibration, Vol. 246, No. 1, 
pp.29–46. 

Liu, G.R. and Gu, Y.T. (2005) An Introduction to Meshfree Methods and Their Programming, 
Berlin: Springer. 

Mylvaganam, K. and Zhang, L.C. (2004a) ‘Chemical bonding in polyethylene-nanotube 
composites: a quantum mechanics prediction’, Journal of Physical Chemistry B, Vol. 108, 
pp.5217–5220. 

Mylvaganam, K. and Zhang, L.C. (2004b) ‘Nanotube functionalization and polymer grafting: an  
ab initio study’, Journal of Physical Chemistry B, Vol. 108, pp.15009–15012. 

Mylvaganam, K. and Zhang, L.C. (2004c) ‘Important issues in a molecular dynamics simulation for 
characterizing the mechanical properties of carbon nanotubes’, Carbon, Vol. 42,  
pp.2025–2032. 

Osterberg, P.M. (1995) ‘Electrostatically actuated micromechanical test structures for material 
property measurement’, PhD Dissertation, Cambridge, MA: MIT. 

Rapaport, D.C. (1995) The Art of Molecular Dynamics Simulation, Cambridge University Press. 

Rueckes, T., et al. (2000) ‘Carbon nanotube-based nonvolatile random access memory for 
molecular computing’, Science, Vol. 289, pp.94–97. 

Vodenitcharova, T. and Zhang, L.C. (2003) ‘Effective wall thickness of a single-walled carbon 
nanotube’, Physcial Review B, Vol. 68, pp.165–401. 

Wang, Q.X., et al. (2004) ‘Analysis of microelectromechanical systems (MEMS) by meshless 
Local Kriging (LoKriging) method’, Journal of the Chinese Institute of Engineers, Vol. 27, 
pp.573–583. 

Wong, E.W., Sheehan, P.E. and Lieber, C.M.V. (1997) ‘Nanobeam mechanics: elasticity, strength, 
and toughness of nanorods and nanotubes’, Science, Vol. 277, pp.1971–1975. 

Zienkiewicz, O.C. and Taylor, R.L. (2000) The Finite Element Method, 5th edition, Oxford: 
Butterworth Heinemann. 


