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Mechanism of bending with kinking of a single-walled carbon nanotube
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This paper explores the mechanism of bending with kinking of a long single-walled carbon nanotube under
pure bending with moderate bending angles. The prebuckling response was modeled using the existing con-
tinuum mechanics theory accounting for the ovalization of the cross section. The post-buckling behavior was
characterized by the development of an elastic kink mechanism, considering the van der Waals force. It was
found that the post-buckling strain energy increases almost linearly with the bending angle. The van der Waals
force facilitates the kink development and its effect becomes more pronounced at large bending angles.
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[. INTRODUCTION peak at the point of local buckling. The kink was associated
with the development of plastic deformation. However, the
Carbon nanotubes were found to be exceptionally flexibleapplication of continuum mechanics to a carbon nanotube, a
and to undergo reversible deformation to very high strairdiscrete structure, requires knowledge of geometrical param-
levels in all generic loading types due to their high bond-eters(e.g., equivalent thickned3, material propertiege.qg.,
breaking resistancke? lijima et al? studied both experimen- equivalent Young’s modulug), and effect of van der Waals
tally and theoretically the deformation properties of carbonforces. The present paper aims to develop a predictive me-
nanotubes bent to large angles. They showed that singl€hanics model to describe the bending-kinking response of
walled (SWNT’s) and multiwalled nanotube$MWNT's) nanotubes under pure bending, using the equivalent nanotube
could be bent without significant straining up to a critical thickness {=0.617 A) and the equivalent Young's modulus
angle as the outer side of the tube stretched and the inner si¢.88 TPa clarified recently?®
compressed. At a critical bending angle, a single V-shaped
kink initiated in the inner side subjected to compression, Il. MODELING
which in the case of MWNT’s could be followed by multiple . ) ) )
kinks upon further bending. For a SWNT with a radius of 6  Consider the elastic bending of a single-walled nanotube
A, molecular dynamics simulations showed a dip in theSubjected to an external bending momehiFig. 1(a)]. With

strain energy vs bending angle curve at an angle of arountfcréasing the load the tube bends and flattens, as both ex-
27.8° when the nanotube buckled locally and the kink_perlments and MD S|mulat|0_ns shqwed. Slncg th(_a dom_lnant
started. Upon further loading the kink advanced with almosinternal stress in pure bending is in the longitudinal direc-
a linear energy-bending angle relationship. The top and théon. the circumferential direct strain is negligible and the
bottom walls of the nanotube were found to be separated bfprmulas for inextensional bending with flattening can be
a gap of around 3.5 A, at which the van der Waals interactiorfPPlied. Additionally, it is reasonable to accept that the strain
became strongly repulsive. Upon complete unloading fromS small befpre local bucklm_gor klnk|'ng) is initiated at a
angles below 110° the nanotube completely recovered. HoweMall bending angle. Bending of circular tubes with the
ever, at a very large bending angle of 120° atomic bong&Pove d_eformatlon characterlstlcslgvas studied _by Brazier, as
broke and the nanotube’s deformation became irreversible,Summarized in many referencs’*For convenience, rel-
Further studies confirmed the above observations. YakolEvant formulas are listed in the Appendix.
sonet al! conducted similar MD simulations on the bending . Before kinking, the flattening of a nanotube’s cross sec-
of nanotubes but additionally studied the response of thd0n during bending can be described by the flattening ratio
tubes to axial loading and torsion. They noticed the similari- R_R
ties in the behavior of carbon nanotubes and macroscopic (= < (1)
shells and suggested that the continuum theories of shell R

structures can be of use in predicting the behavior of carboyhereR is the initial radius of the tube arR, is the current

nanotubes. radius(along the small semi-aXizarying with the bending

_ The berjgjéng of maclré)tubes_ has been wellgnhgie . The normal and tangential displacements are, re-
investigated~*® Mamalis et al’® experimentally observed spectively[Fig. 1a)]

three collapse modes of circular tubes in plastic bending, i.e.,

a V-shaped kink with triangular regions in the compressive w=R{ cos 29,
wall, a similar kink but additionally supplemented by bulges
parallel to the hinge line and a fractural failure in the tensile v=— LR¢ sin 26. )

side of the kink due to excessive stretching. In the first col-

lapse mode, they found that at a small bending angle ofVith the increase of the external bending moment, the axial
around 10° the tube started folding, i.e., a kink was initiatedcompression in the tube increases as well, and when the
and the bending moment started to decrease steadily from itompressive stress reaches a critical value, the tube will lo-
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FIG. 1. (@) Nanotube geometry, wheteis the lengthR is the mean radiug, is the wall thicknessg is the circumferential coordinate,
andM is the external bending momeffb) Kink mechanism of a nanotube under bendifey Side view of(b). (d) Top view of (b). (e) Cross
sectionl-1 of (d). (f) Cross sectionl -1l of (d).

cally buckle. The value of at the point of local buckling is The formulation is based on two continuity conditions, in

around 0.14(see the Appendjx the circumferential direction of the tube and in the tube’s
Once the kink has started, the nanotube becomes a m&ngitudinal direction. The cross-section deforms in such a

chanical mechanism and the formulas in the Appendix are navay that a circular aré"C” defined by a central anglé;,

longer valid. Relevant experiments and molecular dynamicflattens and produces a hinge liA€ [Fig. 1(e)—1(f)]. This

simulations suggest that the pattern of the deformation recondition differs from the conditioAC=2¢(R (Ref. 13 in

sembles the kink mechanism similar to that of a macrotdbe. macrotubes of small collapsing angles and avoids the cross

A portion of the wall flattens and forms two triangular plates section jamming at angles very close to the angles of kinking

ACF andACE [Figs. 1b)-1(d)] that rotate about a central initiation. The length ofAC is calculated as

hinge lineAC. The remaining part of the tube remains cir-

cular although it flattens and decreases its curvature. The AC=A"C"=2Reg. (3)

borders between the triangular zones and the circular zon L .

are hinge lineA\E, CE, AF, andCF. The collapse mode of %n the other hand, it is obvious that

f(_)ldmg is nea_rly |next_en3|0nal and the hinges cquld be AC=2AB=2R' sing}, (4)

viewed as stationary. Since a carbon nanotube elastically de-

forms even after kinking, the hinges in the above kinkwhereR’ is the radius of the bottom akDC as shown in

mechanism are elastic. Fig. Af).
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Equations(3), (4) lead to

Reo=R’ singyg, 5
therefore,
, R'singg
o= (®)

Further, the length of the bottom afdG C is calculated by

AGC=2R (7~ @}). 7)

For an inextensional cross section, the perimeter remains un-

changed, i.,e AC+AGC=27nR, hence
2Reg+ 2R (71— @) =27R (8a)
or

2Rsingy+ 2R’ (7m— ¢))=27R. (8b)

Additionally, parameter&®’ and ¢, are linked to the de-
formation in the longitudinal direction through parameéger
defined in Ref. 12:

R'+ R’ cospy=2R— 4. 9
From Eq.(8a) one gets
, 7R

= (10
SIN@y+ 7T— @q

The coordinates of poim, expressed in terms of the bend-

ing angle ¢, are xp=I, ya=2Rcosf)—[2Rsin\(2l
—2Rsin\)]¥2 and z, =R’ sing}. The length of the kink R
is assumed to be equal tdrR2(Ref. 13 and the drop in the

cross sectionS is
6=2R—-yjg. (11

Further,

1— —sin\A (12

and the length of each of the hinge lind&, CE, AF, CF
is

a=asin

2R )

=P+ AR

13
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W;=4M 4Reg. (15

The bottom circular region, initially with a circumferential
curvature of (1R), flattens to an arc with a curvature of
(1/R") during kinking. Then, the bending momevt, in the
circumferential direction is given by

Mo 1 1 Et3 16
27 |\R' R/121—u4d (16)

and the stored strain energy becomes
W, =AM R(7— 0f) (04— ©).- 17

Both the triangular parts of the kink rotate about a stationary
hinge line AC with a relative angle of rotation#€—2«).

The elastic bending momeiM ,, working during this rota-
tion is in thex direction. In order to calculate this quantity,
one needs to evaluate the curvature chage of the plates
locally at the location of the hingEFig. 1(c)] although the
plates in the kink mechanism are considered flat. It is evident
that for = 7/2 (undeformed tubethe local curvaturdl/p)

is 0. With the development of the kink, the local curvature
increases, as the two parts of the kink cannot get closer than
the equilibrium distance ade=3.42 A. Fora=0 (full flat-
tening, the distance between the opposite walls is exactly
equal to the equilibrium distance and an arc is formed with a
curvature (1p)=(3.42/2) A. As a first approximation, the
variation of the local curvature witlx can be considered
linear in the range of/2 to 0. This leads to

Mo 2 71-2a Et3 18
The strain energy then becomes
Ws3=M,,(7—2a)AC. (19

At hinge linesAE, CE, AF, andCF the elastic moment in
the direction perpendicular to the hinges is obtained by re-
solving the moment$/ ,, and M, (being zero in the flat-
tened triangular parts

M pn=M,COZ £,+ M y,sirf &, (20)

whereeg, is the angle between the normal to the hinge line
and the longitudinak direction, i.e.,

Here the tube mechanism deforms elastically. Hence, the

bending moments are calculated using the plate/shell theory
considering the curvatures in bending. The top cylindrical

(21)

I
Ex= atar( ﬁ) .

part of the kink in its unstrained position has a curvature in

the circumferential direction of (R). After local buckling,
it flattens into the triangular zonésCF andACE, undergo-

ing a curvature change of{(1/R). Therefore, the bending

moment in the circumferential directiofis

1 Et3

Mor=R T2 w?) (e

Then the strain energy at each of the four hinge lines is

2M il 20t
WAZ%M_ (22)
Thus, as the bending anglevaries, the elastic moments in

the plates of the kink mechanism vary as well and as a con-
sequence the total work done by the external load, being the

where u is the Poisson’s ratio and the corresponding worksum of all four strain energies, is a function of the bending

done in flattening, or stored energy, is

angleW(y), i.e.,
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FIG. 2. (a) Total strain energy of a nanotube with=6.26 A. (b) Bending moment$/ vs bending angle(c) Elastic bending moments
in the plates of the kink varying with the bending andi®. Work done in the kink mechanism, whev¢, is the work done in flattening of
the triangular regions), is the work done in flattening of the circular regidiiz is the work done in rotation about hinge lideC, W, is
the work done in rotation about hinge lind&, CE, AF andCE, W, is the work done by the van der Waals force and W is the total work
done.(e) Longitudinal section through the kink at bending angle of 525t to scalg (f) Cross-sectional view of the deformed atomic
rings at bending angle of 52.4°.

Ill. WORK DONE BY THE VAN DER WAALS FORCE

4
W( '/'):2‘1 Wi 23 The van der Waals force accounts for the interaction be-

tween the opposite walls of the nanotube when they ap-

proach each other. The magnitude of the force depends on
With the knownW, the external bending moment at any the distance between the atoms. For large distances, the van
bending angle is calculated as the derivatiNé&/dy. Equa- der Waals force is attractive, but when the separation be-
tion (23) evaluates the elastic work absorbed in the tube durtween the atoms is below the equilibrium distance of 3.42 A,
ing the bending process due to mechanical loads only. Howit becomes strongly repulsive. In the case of pure bending of
ever, the bending of a nanotube differs from that of ananotubes the van der Waals interaction appears when the
macrotube because in the former van der Waals forces plalyink starts. With the increase in the bending angle, the top
an important role when kinking appears. and bottom parts of the kink get closer to each other, and at
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a certain stage, the distance between them reaches the equi-  *
librium distance. Upon additional bending, this distance re-
mains unchanged because there are no external normal loads
applied on the walls to prevail over the repulsive van der
Waals forces.

The van der Waals force between aténand j can be
expressed by the Lennard-Jones potential as

0,12 0,6)
)

Uij(rij)=48<ﬁz—ﬁ;ﬁ
ij ij

MD model in lijima et al ="

\

Present model

Relative total energy

=3

(29)

20 30 40 50 60

Bending angle (degrees)

=
=

_ 19 _ ;
Wherg £=4.7483<10 " (Nmm), 0=3.407 A, andrj; is . FIG. 3. Comparison between the relative energies in the present
the distance between the two atoms. Then, the total potentigl, el and in Ref. 2R=6A).

for the nanotubeJ 4, is the sum of the contribution of all

atoms. The work done by the van der Waals force for eachs shown in Fig. 2e) and the cross-sectional view is plotted
atom is the product of the force and the displacement of the, Fig. ().

atom during the deformation of the kink. Bearing in mind  Thg injtial deformation of the cross sectiors:0 andx

that the van der Waals force is potential, the total work done= 5| 4t |ocal buckling is taken into account; however, its
by this force during the bending of the tuMéqy can be jyquence is negligible. The values of the work done by the
calculated as the increase in the total tube potential from thg; der Waals force are negative, as shown in Fid). Zhis
initial unstrained state to the current strained state correyg expected as the van der Waals force is rather an “external”
sponding to the current bending angle incorporating the 544 than a resistance force and its work is added to the work
location details of the atoms in the kink according to theygne by the external momekt(i). In the calculation of the
chirality of the nanotube and the geometry of the kinkingyan der Waals force, we consider only the interaction be-

mechanism developed in the previous section. tween the top and bottom walls of the kink and introduce a
cutoff of 3 A. The interaction between the two sides of the
IV. RESULTS AND DISCUSSION top surface, which are inclined at an angle af, 4s ne-

. . . glected. This assumption is close to the real behavior of

As an example, a nanotube with a radius of 6.26 A 'Skinking. As the kink develops, the equilibrium distance of
considered. The elastic modulus and the thicknessEare 3 45 A is quickly reached. Further increase of the bending
=4.88 TPa a}qdfo.%ﬂ A, respectively, according to our angley does not decrease the distance between the sidewalls
previous clarificatiort® The Poisson’s ratio adopted is 0.19. because there is no lateral load to force the walls getting
The Brazier theorysee the Appendjxholds up to the point  qser and overcome the large repulsive force.
of local buckling atyy=25.58°. Below this point, the elastic lijima et al? reported that the kinking of a nanotube of
energy calculated by EqeA4)—(AS) is nonlinearfFig. 28] agiusR=6 A occurs at an angle of about 27.8°. Further
but the bending mome (¢) increases quite linearly up 10 geyelopment of the kink is associated with an almost linear
abouty=20° [Fig. 2(b)]. _ _increase of the strain energy. The present model, when ap-
_ When kink happens, the absorbed energy during bendingjieq to the same nanotube, showed almost exactly the same
is almost linear and the corresponding bending angle is alitical bending angle of 27.9°. Comparing the strain ener-
most constant. The elastic bending moments in the UPPies (Fig. 3) the present model produces before kinking
triangular plates, bottom arc, along hinge lin&€, AE,  gjightly higher relative strain energfi.e., the ratio of the
CE, AF, andCF are plotted in Fig. @). Itis clear that the = girain energy ay and the strain energy at the critical buck-
moment in hingeAC, M, is dominant because in the kink jing angle just before kinking At the point of kinking, the
the local curvature at that location is large, as confirmed by, odel gives the same drop in energy as the molecular dy-
the results shown in Fig.(@), whereWs is the work done by namics simulation predicted. Upon further increase of the
M. bending angle, however, the present model yields lower val-

In order to calculate the work done by the van der Waalg,es of strain energy and lower bending moments. Therefore,
force Wyqw one needs to know the initial and curref@t  more accurate kinking mechanism, especially the longitudi-

varying bending angle)) positions of the carbon atoms. Be- npa| curvature development in the compressed part of the
fore deformation, circumferentially the atoms are at a diskink, needs to be established.

tance ofS=1.42/3 A but longitudinally they are clustered
into rings at an alternating distance of 0.71 or 1.42 A. During
bending the atoms move following the deformation of the
kink, as quantitatively evaluated in Sec. Il. It is reasonable to This paper has established a mechanics model for the
assume that the tube cross sections remain planar duringznding mechanism of a SWNT with kinking. The prebuck-
kinking and the increments in the coordinates of the atom$ing deformation involves the ovalization of the tube cross
vary linearly between the corresponding atoms in the endection and the post-buckling deformation takes into account
cross sections. The length of the kink Zccommodates flattening and the van der Waals force. A new concept of
twelve rings; atyy=52.4° the longitudinal view of the rings elastic hinges is introduced to reflect the large elastic defor-

V. CONCLUSIONS

115410-5



T. VODENITCHAROVA AND L. C. ZHANG PHYSICAL REVIEW B 69, 115410 (2004

mation. The prediction of the model, including the variationwhereN is the axial load.

of strain energy and the stiffening of the nanotube is consis- The elementary bending theory, which gives no consider-
tent with the existing experimental observations and molecuation to the flattening effect, leads to a critical bending mo-
lar dynamics simulations. This model and its associated dement in local bucklingVi

formation mechanism describe clearly the bending-kinking

process of a SWNT and offer a convenient tool for the me- wERth
chanical characterization of SWNT’s of various diameters. M= i
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APPENDIX: BRAZIER THEORY However, the flattening will decrease the value of the critical

bending momenM
Consider a tube of thickness radius R, length L,

Young’s modulusE, and Poisson’s ratig.. The curvature of M=mMc,, (A8)

the tube axis in the longitudinal directidd is expressed as . .
wherem is derived as

2ct

o (A1) m=2c(1-2c?). (A9)
RE(1— V3’

For small values ot the radius of the local curvature at the

wherec is the nondimensional curvature defined as point of the maximum compressive stress is calculated as
= V3 A2 R A10
c=— (A2) P=1"3¢ (A10)
The strain energy per unit length is given by Thus, the maximum compressive stress will be a fraction of
the critical compressive stress predicted by the elementary

5 37Eth?¢?
S| 2" S beam theory
8§)+ sr (A3

where the first term is the contribution of the longitudinal
stretching of the ovalized cross section and the second termheres is called dimensionless extreme fiber stress.
is the contribution of the circumferential bending during It is assumed that the compressive stress at local buckling

ovalization as a ring. depends on the local curvature so that
Then, the total tube energy is

U—1C2E R3t| 1 3 +
27 =T 2¢
0=S0¢, (A11)

U,=UL (A4) Scr:;- (A12)

and the bending moment is The compressive strain is therefore

M_dUt
_w_

For axial compression, the critical compressive stress is

(AS5) e=CR(1-{). (A13)

From Fig. 16.7a) of Ref. 6 the point of intersection of,
and s corresponds to the point of local buckling with
=0.14. For{ up to 0.14, the quantities above are calculated

UchE - _ & (A6) as functions _o‘Z, resulti_ng in the graph in Figs(®, 2(b) for
t V3(1—u?) the prebuckling behavior of the nanotube.
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