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Mechanism of bending with kinking of a single-walled carbon nanotube

T. Vodenitcharova and L. C. Zhang*
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~Received 24 October 2003; published 16 March 2004!

This paper explores the mechanism of bending with kinking of a long single-walled carbon nanotube under
pure bending with moderate bending angles. The prebuckling response was modeled using the existing con-
tinuum mechanics theory accounting for the ovalization of the cross section. The post-buckling behavior was
characterized by the development of an elastic kink mechanism, considering the van der Waals force. It was
found that the post-buckling strain energy increases almost linearly with the bending angle. The van der Waals
force facilitates the kink development and its effect becomes more pronounced at large bending angles.

DOI: 10.1103/PhysRevB.69.115410 PACS number~s!: 61.46.1w, 46.70.2p
ibl
ai
d

-
o
g

a
s

pe
on
e
6

he
un
in
os
th
b

tio
om
ow
nd
le
o
g
th
r

op
h
bo

el

i.e
iv
es
ile
o

ed

ted
he
e, a
am-

me-
of

tube
s

be

ex-
ant
c-

he
be
ain

he
, as

ec-
io

re-

xial
the

l lo-
I. INTRODUCTION

Carbon nanotubes were found to be exceptionally flex
and to undergo reversible deformation to very high str
levels in all generic loading types due to their high bon
breaking resistance.1–5 Iijima et al.2 studied both experimen
tally and theoretically the deformation properties of carb
nanotubes bent to large angles. They showed that sin
walled ~SWNT’s! and multiwalled nanotubes~MWNT’s!
could be bent without significant straining up to a critic
angle as the outer side of the tube stretched and the inner
compressed. At a critical bending angle, a single V-sha
kink initiated in the inner side subjected to compressi
which in the case of MWNT’s could be followed by multipl
kinks upon further bending. For a SWNT with a radius of
Å, molecular dynamics simulations showed a dip in t
strain energy vs bending angle curve at an angle of aro
27.8° when the nanotube buckled locally and the k
started. Upon further loading the kink advanced with alm
a linear energy-bending angle relationship. The top and
bottom walls of the nanotube were found to be separated
a gap of around 3.5 Å, at which the van der Waals interac
became strongly repulsive. Upon complete unloading fr
angles below 110° the nanotube completely recovered. H
ever, at a very large bending angle of 120° atomic bo
broke and the nanotube’s deformation became irreversib

Further studies confirmed the above observations. Yak
sonet al.1 conducted similar MD simulations on the bendin
of nanotubes but additionally studied the response of
tubes to axial loading and torsion. They noticed the simila
ties in the behavior of carbon nanotubes and macrosc
shells and suggested that the continuum theories of s
structures can be of use in predicting the behavior of car
nanotubes.

The bending of macrotubes has been w
investigated.6–18 Mamalis et al.13 experimentally observed
three collapse modes of circular tubes in plastic bending,
a V-shaped kink with triangular regions in the compress
wall, a similar kink but additionally supplemented by bulg
parallel to the hinge line and a fractural failure in the tens
side of the kink due to excessive stretching. In the first c
lapse mode, they found that at a small bending angle
around 10° the tube started folding, i.e., a kink was initiat
and the bending moment started to decrease steadily from
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peak at the point of local buckling. The kink was associa
with the development of plastic deformation. However, t
application of continuum mechanics to a carbon nanotub
discrete structure, requires knowledge of geometrical par
eters~e.g., equivalent thicknesst), material properties~e.g.,
equivalent Young’s modulusE), and effect of van der Waals
forces. The present paper aims to develop a predictive
chanics model to describe the bending-kinking response
nanotubes under pure bending, using the equivalent nano
thickness (t50.617 Å) and the equivalent Young’s modulu
~4.88 TPa! clarified recently.19

II. MODELING

Consider the elastic bending of a single-walled nanotu
subjected to an external bending momentM @Fig. 1~a!#. With
increasing the load the tube bends and flattens, as both
periments and MD simulations showed. Since the domin
internal stress in pure bending is in the longitudinal dire
tion, the circumferential direct strain is negligible and t
formulas for inextensional bending with flattening can
applied. Additionally, it is reasonable to accept that the str
is small before local buckling~or kinking! is initiated at a
small bending angle. Bending of circular tubes with t
above deformation characteristics was studied by Brazier
summarized in many references.6,17,18 For convenience, rel-
evant formulas are listed in the Appendix.

Before kinking, the flattening of a nanotube’s cross s
tion during bending can be described by the flattening ratz

z5
R2Rc

R
, ~1!

whereR is the initial radius of the tube andRc is the current
radius~along the small semi-axis! varying with the bending
angle c. The normal and tangential displacements are,
spectively@Fig. 1~a!#

w5Rz cos 2u,

v52 1
2 Rz sin 2u. ~2!

With the increase of the external bending moment, the a
compression in the tube increases as well, and when
compressive stress reaches a critical value, the tube wil
©2004 The American Physical Society10-1
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FIG. 1. ~a! Nanotube geometry, whereL is the length,R is the mean radius,t is the wall thickness,u is the circumferential coordinate
andM is the external bending moment.~b! Kink mechanism of a nanotube under bending.~c! Side view of~b!. ~d! Top view of~b!. ~e! Cross
sectionI -I of ~d!. ~f! Cross sectionII -II of ~d!.
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cally buckle. The value ofz at the point of local buckling is
around 0.14~see the Appendix!.

Once the kink has started, the nanotube becomes a
chanical mechanism and the formulas in the Appendix are
longer valid. Relevant experiments and molecular dynam
simulations suggest that the pattern of the deformation
sembles the kink mechanism similar to that of a macrotub13

A portion of the wall flattens and forms two triangular plat
ACF andACE @Figs. 1~b!–1~d!# that rotate about a centra
hinge lineAC. The remaining part of the tube remains c
cular although it flattens and decreases its curvature.
borders between the triangular zones and the circular zo
are hinge linesAE, CE, AF, andCF. The collapse mode o
folding is nearly inextensional and the hinges could
viewed as stationary. Since a carbon nanotube elastically
forms even after kinking, the hinges in the above ki
mechanism are elastic.
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The formulation is based on two continuity conditions,
the circumferential direction of the tube and in the tub
longitudinal direction. The cross-section deforms in such
way that a circular arcA9C9 defined by a central anglef09 ,
flattens and produces a hinge lineAC @Fig. 1~e!–1~f!#. This
condition differs from the conditionAC52f0R ~Ref. 13! in
macrotubes of small collapsing angles and avoids the c
section jamming at angles very close to the angles of kink
initiation. The length ofAC is calculated as

AC5A9C952Rw09 . ~3!

On the other hand, it is obvious that

AC52AB52R8 sinw08 , ~4!

whereR8 is the radius of the bottom arcADC as shown in
Fig. 1~f!.
0-2
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Equations~3!, ~4! lead to

Rw095R8 sinw08 , ~5!

therefore,

w095
R8 sinw08

R
. ~6!

Further, the length of the bottom arcAGC is calculated by

AGC52R8~p2w08!. ~7!

For an inextensional cross section, the perimeter remains
changed, i.e.,AC1AGC52pR, hence

2Rw0912R8~p2w08!52pR ~8a!

or

2R sinw0812R8~p2w08!52pR. ~8b!

Additionally, parametersR8 andw08 are linked to the de-
formation in the longitudinal direction through parameterd
defined in Ref. 12:

R81R8 cosw0852R2d. ~9!

From Eq.~8a! one gets

R85
pR

sinw081p2w08
. ~10!

The coordinates of pointA, expressed in terms of the ben
ing angle c, are xA5 l , yA52R cos(l)2@2Rsinl(2l
22Rsinl)#1/2 andzA5R8 sinw08 . The length of the kink 2l
is assumed to be equal to 2R ~Ref. 13! and the drop in the
cross sectiond is

d52R2yB . ~11!

Further,

a5a sinS 12
2R

l
sinl D , ~12!

and the length of each of the hinge linesAE, CE, AF, CF
is

l h5Al 21AB2. ~13!

Here the tube mechanism deforms elastically. Hence,
bending moments are calculated using the plate/shell th
considering the curvatures in bending. The top cylindri
part of the kink in its unstrained position has a curvature
the circumferential direction of (1/R). After local buckling,
it flattens into the triangular zonesACF andACE, undergo-
ing a curvature change of (21/R). Therefore, the bending
moment in the circumferential directionu is

M uu5
1

R

Et3

12~12m2!
, ~14!

wherem is the Poisson’s ratio and the corresponding wo
done in flattening, or stored energy, is
11541
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W154M uuRw09 . ~15!

The bottom circular region, initially with a circumferentia
curvature of (1/R), flattens to an arc with a curvature o
(1/R8) during kinking. Then, the bending momentM2 in the
circumferential direction is given by

M252S 1

R8
2

1

RD Et3

12~12m2!
~16!

and the stored strain energy becomes

W254M2R~p2w09!~w082w09!. ~17!

Both the triangular parts of the kink rotate about a station
hinge line AC with a relative angle of rotation (p22a).
The elastic bending momentMxx working during this rota-
tion is in thex direction. In order to calculate this quantit
one needs to evaluate the curvature change~1/r! of the plates
locally at the location of the hinge@Fig. 1~c!# although the
plates in the kink mechanism are considered flat. It is evid
that for a5p/2 ~undeformed tube! the local curvature~1/r!
is 0. With the development of the kink, the local curvatu
increases, as the two parts of the kink cannot get closer
the equilibrium distance ofdeq53.42 Å. Fora50 ~full flat-
tening!, the distance between the opposite walls is exac
equal to the equilibrium distance and an arc is formed wit
curvature (1/r)5(3.42/2) Å. As a first approximation, the
variation of the local curvature witha can be considered
linear in the range ofp/2 to 0. This leads to

Mxx5S 2

deq

p22a

p D Et3

12~12m2!
. ~18!

The strain energy then becomes

W35Mxx~p22a!AC. ~19!

At hinge linesAE, CE, AF, andCF the elastic moment in
the direction perpendicular to the hinges is obtained by
solving the momentsM uu and Mxx ~being zero in the flat-
tened triangular parts!

Mnn5Mxx cos2 «x1M uu sin2 «x , ~20!

where«x is the angle between the normal to the hinge li
and the longitudinalx direction, i.e.,

«x5a tanS l

ABD . ~21!

Then the strain energy at each of the four hinge lines is

W45
2Mnnl h

2w08

l
. ~22!

Thus, as the bending anglec varies, the elastic moments i
the plates of the kink mechanism vary as well and as a c
sequence the total work done by the external load, being
sum of all four strain energies, is a function of the bendi
angleW(c), i.e.,
0-3
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FIG. 2. ~a! Total strain energy of a nanotube withR56.26 Å. ~b! Bending momentsM vs bending angle.~c! Elastic bending moments
in the plates of the kink varying with the bending angle.~d! Work done in the kink mechanism, whereW1 is the work done in flattening of
the triangular regions,W2 is the work done in flattening of the circular region,W3 is the work done in rotation about hinge lineAC, W4 is
the work done in rotation about hinge linesAE, CE, AF andCE, WvdW is the work done by the van der Waals force and W is the total w
done.~e! Longitudinal section through the kink at bending angle of 52.4°~not to scale!. ~f! Cross-sectional view of the deformed atom
rings at bending angle of 52.4°.
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With the known W, the external bending moment at an
bending angle is calculated as the derivativedW/dc. Equa-
tion ~23! evaluates the elastic work absorbed in the tube d
ing the bending process due to mechanical loads only. H
ever, the bending of a nanotube differs from that of
macrotube because in the former van der Waals forces
an important role when kinking appears.
11541
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III. WORK DONE BY THE VAN DER WAALS FORCE

The van der Waals force accounts for the interaction
tween the opposite walls of the nanotube when they
proach each other. The magnitude of the force depends
the distance between the atoms. For large distances, the
der Waals force is attractive, but when the separation
tween the atoms is below the equilibrium distance of 3.42
it becomes strongly repulsive. In the case of pure bending
nanotubes the van der Waals interaction appears when
kink starts. With the increase in the bending angle, the
and bottom parts of the kink get closer to each other, an
0-4
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a certain stage, the distance between them reaches the
librium distance. Upon additional bending, this distance
mains unchanged because there are no external normal
applied on the walls to prevail over the repulsive van d
Waals forces.

The van der Waals force between atomi and j can be
expressed by the Lennard-Jones potential as

Ui j ~r i j !54«S s12

r i j
12 2

s6

r i j
6 D , ~24!

where «54.7483310219 (N mm), s53.407 Å, andr i j is
the distance between the two atoms. Then, the total pote
for the nanotubeUvdW, is the sum of the contribution of al
atoms. The work done by the van der Waals force for e
atom is the product of the force and the displacement of
atom during the deformation of the kink. Bearing in min
that the van der Waals force is potential, the total work do
by this force during the bending of the tubeWvdW can be
calculated as the increase in the total tube potential from
initial unstrained state to the current strained state co
sponding to the current bending anglec, incorporating the
location details of the atoms in the kink according to t
chirality of the nanotube and the geometry of the kinki
mechanism developed in the previous section.

IV. RESULTS AND DISCUSSION

As an example, a nanotube with a radius of 6.26 Å
considered. The elastic modulus and the thickness arE
54.88 TPa andt50.617 Å, respectively, according to ou
previous clarification.19 The Poisson’s ratio adopted is 0.191

The Brazier theory~see the Appendix! holds up to the point
of local buckling atc525.58°. Below this point, the elasti
energy calculated by Eqs.~A4!–~A5! is nonlinear@Fig. 2~a!#
but the bending momentM (c) increases quite linearly up t
aboutc520° @Fig. 2~b!#.

When kink happens, the absorbed energy during bend
is almost linear and the corresponding bending angle is
most constant. The elastic bending moments in the up
triangular plates, bottom arc, along hinge linesAC, AE,
CE, AF, andCF are plotted in Fig. 2~c!. It is clear that the
moment in hingeAC, Mxx , is dominant because in the kin
the local curvature at that location is large, as confirmed
the results shown in Fig. 2~d!, whereW3 is the work done by
Mxx .

In order to calculate the work done by the van der Wa
force WvdW one needs to know the initial and current~at
varying bending anglec! positions of the carbon atoms. Be
fore deformation, circumferentially the atoms are at a d
tance ofS51.42) Å but longitudinally they are clustere
into rings at an alternating distance of 0.71 or 1.42 Å. Dur
bending the atoms move following the deformation of t
kink, as quantitatively evaluated in Sec. II. It is reasonable
assume that the tube cross sections remain planar du
kinking and the increments in the coordinates of the ato
vary linearly between the corresponding atoms in the
cross sections. The length of the kink 2l accommodates
twelve rings; atc552.4° the longitudinal view of the rings
11541
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is shown in Fig. 2~e! and the cross-sectional view is plotte
in Fig. 2~f!.

The initial deformation of the cross sectionsx50 andx
52l at local buckling is taken into account; however,
influence is negligible. The values of the work done by t
van der Waals force are negative, as shown in Fig. 2~d!. This
is expected as the van der Waals force is rather an ‘‘extern
load than a resistance force and its work is added to the w
done by the external momentM (c). In the calculation of the
van der Waals force, we consider only the interaction
tween the top and bottom walls of the kink and introduce
cutoff of 3 Å. The interaction between the two sides of t
top surface, which are inclined at an angle of 2a, is ne-
glected. This assumption is close to the real behavior
kinking. As the kink develops, the equilibrium distance
3.42 Å is quickly reached. Further increase of the bend
anglec does not decrease the distance between the sidew
because there is no lateral load to force the walls get
closer and overcome the large repulsive force.

Iijima et al.2 reported that the kinking of a nanotube
radius R56 Å occurs at an angle of about 27.8°. Furth
development of the kink is associated with an almost lin
increase of the strain energy. The present model, when
plied to the same nanotube, showed almost exactly the s
critical bending angle of 27.9°. Comparing the strain en
gies ~Fig. 3! the present model produces before kinki
slightly higher relative strain energy~i.e., the ratio of the
strain energy atc and the strain energy at the critical buc
ling angle just before kinking!. At the point of kinking, the
model gives the same drop in energy as the molecular
namics simulation predicted. Upon further increase of
bending angle, however, the present model yields lower
ues of strain energy and lower bending moments. Theref
more accurate kinking mechanism, especially the longitu
nal curvature development in the compressed part of
kink, needs to be established.

V. CONCLUSIONS

This paper has established a mechanics model for
bending mechanism of a SWNT with kinking. The prebuc
ling deformation involves the ovalization of the tube cro
section and the post-buckling deformation takes into acco
flattening and the van der Waals force. A new concept
elastic hinges is introduced to reflect the large elastic de

FIG. 3. Comparison between the relative energies in the pre
model and in Ref. 2 (R56 Å).
0-5
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mation. The prediction of the model, including the variati
of strain energy and the stiffening of the nanotube is con
tent with the existing experimental observations and mole
lar dynamics simulations. This model and its associated
formation mechanism describe clearly the bending-kink
process of a SWNT and offer a convenient tool for the m
chanical characterization of SWNT’s of various diameter
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APPENDIX: BRAZIER THEORY

Consider a tube of thicknesst, radius R, length L,
Young’s modulusE, and Poisson’s ratiom. The curvature of
the tube axis in the longitudinal directionC is expressed as

C5
2ct

R2~12m2!)
, ~A1!

wherec is the nondimensional curvature defined as

c5
A3z

2
. ~A2!

The strain energy per unit lengthU is given by

U5
1

2
C2EpR3tS 12

3

2
z1

5

8
z2D1

3pEth2z2

8R
, ~A3!

where the first term is the contribution of the longitudin
stretching of the ovalized cross section and the second
is the contribution of the circumferential bending durin
ovalization as a ring.

Then, the total tube energy is

Ut5UL ~A4!

and the bending moment is

M5
dUt

dc
. ~A5!

For axial compression, the critical compressive stress is

scr5
N

t
52

EtR

A3~12m2!
, ~A6!

*E-mail address: zhang@aeromech.usyd.edu.au
1B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett.76,

2511 ~1996!.
2S. Iijima, C. Brabec, A. Maiti, and J. Bernholc, J. Chem. Ph

104, 2089~1996!.
3D. Srivastava, D. W. Brenner, S. J. David, K. D. Ausman, M.

Yu, and R. S. Ruoff, J. Phys. Chem. B103, 4330~1999!.
4M.-F. Yu, M. J. Dyer, and R. S. Ruoff, J. Appl. Phys.89, 4554

~2001!.
5G. Gao, T. Cagin, and W. A. Goddard III~unpublished!.
6C. R. Calladine,Theory of Shell Structures~Cambridge Univer-
11541
s-
-

e-
g
-

l
rm

whereN is the axial load.
The elementary bending theory, which gives no consid

ation to the flattening effect, leads to a critical bending m
ment in local bucklingM cr

M cr5
pERth

)
,

h5
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