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bstract

This paper studies the effect of anisotropy on the response of an R-plane sapphire wafer to a rapid thermal loading. The finite element method
as used to analyse the temperature and stress distribution in the wafer when the environment was heated from room temperature to 800 ◦C, and

hen cooled down to room temperature. To determine the weak and strong points along the wafer edge, fracture criteria for anisotropic materials
ere applied. It was found that the maximum tensile stresses occur at the flat wafer edge on cooling down, and could fracture the wafer, most likely

t a location of a high tensile stress and in a direction of a weak cleavage plane. The wafer appears to be most prone to fracture at its flat edge, and

ould crack in the weakest plane (0 1 1̄ 2). The strongest points along the edge are located at the sides of the flat edge, where the tensile stresses

n the wafer plane are the lowest. A circular wafer subjected to the same thermal loading was also analysed for comparison, and the weakest and
trongest locations and cleavage planes were determined.
 2007 Elsevier B.V. All rights reserved.
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. Introduction

Single crystal sapphire (�-alumina, Al2O3) offers superior
hysical, chemical and optical properties, which make it an
xcellent material for applications, such as high-speed IC chips,
hin-film substrates, and various electronic and mechanical com-
onents [1–3]. Sapphire substrates are often manufactured with
ifferent orientations. For example, substrates in the C-plane
0 0 0 1) are useful for infrared detector applications; substrates
n the A-plane (1 1 2̄ 0) are applicable to high-speed supercon-
uctors; and substrates in the R-plane (1 1̄ 0 2) are used for
etero-epitaxial deposition of silicon for microelectronic IC
pplications.

Nevertheless, wafers made of single crystal sapphire are brit-

le and can fracture under high tensile stresses during fabrication
nd application. Such stresses can occur, for example, in rapid
hermal processing in a horizontal tube. It has been observed

∗ Corresponding author. Tel.: +61 2 9351 2835; fax: +61 2 9351 7060.
E-mail address: Zhang@aeromech.usyd.edu.au (L.C. Zhang).
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hat R-plane sapphire wafers sometimes break, when withdrawn
rom the furnace, predominantly normal to the flat wafer edge,
ig. 1.

The aim of the present paper is to study the relative possibil-
ty of onset of fracture in an R-plane sapphire wafer subjected
o thermal loading. The influence of anisotropy will be taken
nto account to determine the weak and strong points along the
afer circumference. The material properties of the anisotropic

apphire will be investigated first, and then the finite element
ethod will be used to carry out the thermal stress analysis.

. Properties of single crystal sapphire

.1. Elastic properties

�-Alumina, Al2O3 is a hard, brittle material having a
exagonal-rhombohedral structure, whose physical properties

nd surface energies depend on the crystallographic orienta-
ion. Fig. 2(a) shows a primitive cell of the sapphire crystal,
aving lattice parameters a = 4.758 Å and c = 12.991 Å. In the
ame figure, a1a2a3c denotes the hexagonal coordinate system

mailto:Zhang@aeromech.usyd.edu.au
dx.doi.org/10.1016/j.jmatprotec.2007.03.125
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Fig. 1. A cracked wafer after withdrawal from a processing tube.

Fig. 2. (a) Coordinate systems in the sapphire crystal, and the R-plane and (b) a
sapphire wafer in the R-plane, and the coordinate system in the FEA simulations.
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sed for the Miller-Bravais notations of the various crystallo-
raphic planes and orientations, x1x2x3 indicates the rectangular
artesian coordinate system in which the elastic properties of
apphire are specified, and xyz is the coordinate system which
ill be used later in the present paper. Fig. 2(b) shows the R-
lane of the crystal, i.e., a plane inclined at an angle of 32.4◦
o the c-axis, and the R-plane sapphire wafer considered in the
aper.

The elastic properties of single crystal sapphire are defined
y its elastic constants Cij, usually determined in the coordinate
ystem x1x2x3 shown in Fig. 2(a). For a generally anisotropic
lastic material, the elastic constants link the stress tensor σ to
he strain tensor ε through the generalized Hooke’s law:

mn = Cmnpqεpq (1)

r

mn = Smnpq�pq (2)

here Cmnpq are the components of the elasticity (stiffness) ten-
or C (m, n, p, q = 1, 2, 3), and Smnpq are the components of the
ompliance tensor S, so that S = C−1. Since the sapphire crystal
as a trigonal structure of class (3 m̄), its stiffness matrix C, after
mitting the repeated indices, becomes:

σxx

σyy

σzz

σyz

σzx

σxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 0 0

C12 C11 C13 −C14 0 0

C13 C13 C33 0 0 0

C14 −C14 0 C44 0 0

0 0 0 0 C44 C14

0 0 0 0 C14 1/2(C11 − C12)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

εxx

εyy

εzz

γyz

γzx

γxy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (3)

here the tensorial stress and strain components are written
n a vector form. In Eq. (3) C11 (= C22) is related to the
ongitudinal distortions in the x1-direction (respectively x2-
irection), and C33 is related to the longitudinal distortions
n the x3-direction. C44 relates to the shear distortion in the
1–x2 plane, and C12, C13 and C14 relate to more complicated
istortions. The values of Cij are quite consistent in the litera-
ure. For example, C11 = 4.968 (1012 dynes/cm2), C33 = 4.981,

44 = 1.474, C13 = 1.57, and C14 = −0.22 in [4]; C11 = 497.6
GPa), C12 = 162.6, C13 = 117.2, C14 = 22.9, C33 = 501.8, and
44 = 147.2 in [5]; C11 = 497.5 (GPa), C12 = 162.7, C13 = 115.5,
14 = 22.5, C33 = 503.3, and C44 = 147.4 in [6]. Even though the

ndependent elastic constants are only six, they are located in the

lastic matrix in such a way that the material is not orthotropic
n the coordinate system x1x2x3, despite the three-fold symme-
ry of the crystal. If the small term C14 is neglected, however,
he material becomes transversely isotropic, with the plane of
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sotropy being plane x1–x2. The compliance matrix than takes
he form of

S] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

Exx

−μxy

Eyy

−μxz

Ezz

0 0 0

−μxy

Exx

1

Eyy

−μzy

Ezz

0 0 0

−μxz

Exx

−μyz

Eyy

1

Ezz

0 0 0

0 0 0
1

Gyz

0 0

0 0 0 0
1

Gxz

0

0 0 0 0 0
1

Gxy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

f the elastic coefficients (GPa) are taken as C11 = 497.6,
12 = 162.6, C13 = 117.2, C33 = 498.1, C44 = C55 = 147.2, then

rom Eq. (4) the elastic moduli in coordinate system x1x2x3
re calculated as Ex1x1 = Ex2x2 = 1/S11 = 431.24 GPa,
x3x3 = 1/S33 = 456.49 GPa, Gx1x2 = 1/S66 = 167.5 GPa,
x1x3 = Gx2x3 = 1/S44 = 147.2 GPa, μx1x2 = μx2x1 =
.2873, μx1x3 = μx2x3 = 0.1677, μx3x1 = μx3x2 = 0.1775.
hus, a sapphire substrate in the c-plane (0 0 0 1) will be

ransversely isotropic, having in its plane E = 431.24 GPa,
x1x2 = 0.2873 GPa, and Gx1x2 = 1/S66 = 167.5 GPa.

The R-plane sapphire wafer however is oriented in a plane
ifferent from the coordinate planes in the x1x2x3 coordinate
ystem. In order to calculate the in-plane material properties in
he R-plane, the elastic matrix C has to be transformed into the
ew coordinate system XYZ by applying the rule for rotational
ransformation of a tensor of rank 4

′
ijkl = Rim Rjn Rkp Rlq Cmnpq, (5)

here Rij is the transformation matrix that transforms the
omponents of a vector from the coordinate system x1x2x3 to
he coordinate system XYZ. This requires the direction cosines
f the new coordinate system with respect to the old coordinate
ystem. For an R-plane wafer, the unit vectors of the new
oordinate system XYZ are itX = {0.7309 − 0.4220 − 0.5363},
t
Y = {−0.0251 − 0.8020 − 0.5968} and itZ = {0.6820 −
.4228 − 0.5968}. Both the elastic and compliance matrices in
he XYZ coordinate system appear to lack zero terms; therefore
he material is anisotropic in XYZ. Some terms however are small
less than 3% of the largest term C′

11 = 462.40 GPa) and can be
eglected: C′

14 = 1.50 GPa, C′
15 = C′

16 = 11.6 GPa, C′
24 =

′
34 = −8.75 GPa, C′

25 = C′
36 = −5.13 GPa, C′

26 = C′
35 =

.86 GPa, C′
45 = C′

46 = −13.17 GPa, and C′
56 = 10.44 GPa.

hus, the material becomes orthotropic in the R-plane.

hen the material constants are obtained as EXX =
86.00 GPa, EYY = EZZ = 381.88 GPa, μXY = μXZ = 0.2478,
YX = μZX = 0.2451, μYZ = μZY = 0.2519, GXY = GXZ = 169.98
Pa, and GYZ = 172.64 GPa.
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.2. Thermal and other properties

There are various reports on the properties of sapphire, such
s density, fracture toughness KI, tensile strength, specific heat
p, coefficient of thermal expansion α, and coefficient of con-
uctivity k [7–16]. The density of sapphire is calculated as 3.983
g cm−3) in [13], and 3.96–3.98 (g cm−3) on various web pages,
.g., [1–3,17]. The reports on the tensile strength are not very
onsistent: 300 MPa in [17,18], 250–400 MPa in [19]; and it is
rovided as a function of temperature in [2], i.e., 400 MPa at
5 ◦C, 275 at 500 ◦C, and 345 at 1000 ◦C. The fracture tough-
ess (the critical intensity factor KIc) differs from one source to
nother: KIc is 2.0 (MPa m1/2) in [18], 4.0 (MPa m1/2) in [17]
nd 3.0–5.0 (MPa m1/2) in [20].

The research outcome on the specific heat cp of single crystal
apphire appears to be consistent, Fig. 3(a).

The values of the coefficient of thermal expansion, α (1 ◦C),
lso vary slightly from one report to another.

The linear coefficient of thermal expansion in [15] is given
n a technical sense, i.e., α*, which is defined as

∗ = (dL/dT )

L293
, (6)

here L is the length, L293 is the length at room temperature
293 K), T is temperature. α* can be used to calculate the true,
r instantaneous, coefficient α = (dL/dT)/L as follows:

= α ∗
(

1 + �L

L293

)−1

(7)

s shown in Fig. 3(b), α is direction-dependent, and two sets of
ata are provided, parallel to the c-axis, αc, and perpendicular
o the c-axis (that is parallel to the a-axis αa), sapphire is trans-
ersely isotropic. Then, the thermal coefficient in an arbitrary
irection, specified by its angle θ with respect to the c-axis, can
e calculated [21] by

θ = αccos2 θ + αasin2 θ. (8)

According to the published data, it appears that the coefficient
f thermal conductivity of sapphire k depends slightly on the
rientation, being higher along the c-axis, Fig. 3(c).

. Heat transfer

An R-plane sapphire wafer of a diameter of 150 mm and a
hickness of 0.6 mm was studied, Fig. 4.

The thermal material constants were chosen as recommended
n [12,13], and the coefficient of thermal expansion α was
dopted as for Linde synthetic sapphire [14]. The wafer was
ssumed subjected to the thermal history in Fig. 5.

The boundary conditions adopted here are similar to those
reviously used by the authors [22,23]: the single wafer is con-
idered in thermal equilibrium with the surrounding wafers; the

afer is subjected to radiation on its edges while under high

nvironmental temperature, but subjected to convection on the
dges while at low room temperature; the environmental tem-
erature is transferred from the edges through the wafer by heat
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Fig. 3. (a) Variation of specific heat of single crystal sapphire, with temperature, (b) coefficient of thermal expansion α (1 ◦C) and (c) coefficient of thermal conductivity
k (W/m K).

Fig. 4. FEA model in the thermal an

Fig. 5. Variation of environmental temperature with time.
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d stress analysis simulations.

onduction. Transient heat transfer analysis leads to the same
emperature distribution for the anisotropic sapphire wafer, as for
he isotropic sapphire wafer [22] because the sapphire thermal
roperties are not directional dependent, e.g., Figs. 6 and 7.

To check the temperature distribution obtained using FEA, a
omparison was made with an approximate analytical solution
ased on the energy conservation principle. The check was per-
ormed in two cases: (1) for the transient radiation heat transfer

t constant temperature of the surrounding Tsur = 800 ◦C, Fig. 5
nd (2) for the transient convection heat transfer at room tem-
erature T∞ = 20 ◦C. The energy conservation principle states
hat for a control volume V, the increase in the stored energy
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Fig. 6. Contour plot of the tempera

˙ st equals the energy which enters the control volume Ėin (zero
n this case) minus the energy which leaves the control volume
˙ out, i.e.,

˙ in − Ėout = Ėst. (9)

n the case of radiation, the rate of the leaving energy is

˙ r
out = −εσAr

s(T
4 − T 4

sur) (10)

here Ar
s is the radiating surface, ε is the emissivity coefficient,

= 5.67 × 10−8 W/(m2 K4) is the Stefan–Boltzmann constant, T
s the temperature at time t, Tsur is the surrounding temperature,
00 ◦C.

In the case of convection,

˙ c
out = −hAc

s (T − T∞) (11)

here h is the convection coefficient, Ac
s is the convective sur-

ace, and T∞ = 20 ◦C.
The rate of the stored energy in both cases is

˙ st = d
(ρVc) (12)
dt

here ρ is the sapphire density, c = cp, V is the volume of the
afer. For constant Tsur, T∞, h and c, Eqs. (9)–(12) can be solved

or the temperature T at any instant of time t greater than the

Fig. 7. Temperature along the vertical wafer diameter at time 246.7 min.

F
6
f

F
p
i

cross the wafer at time 246.7 min.

nitial instant of time ti, [24]. In the case of convection only,

= T∞ + (Ti − T∞)e−(hAc
s/ρVc)(t−ti) (13)

nd in the case of radiation only,

= ρVc

4εAr
sσT 3

urs

{
ln

∣∣∣∣ Tsur + T

T sur − T

∣∣∣∣ − ln

∣∣∣∣Tsur + Ti

Tsur − Ti

∣∣∣∣
+ 2

[
tan−1

(
T

Tsur

)
− tan−1

(
Ti

Tsur

)]}
(14)

In the above equations, T is considered uniformly distributed
n the wafer, h and c are constant. In the present study, this is
ot the case because T is non-uniform, h and c are temperature
ependent, T∞ and Tsur are varying in time. For a rough compar-
son however, it can be assumed that T is the average temperature
etween the wafer edge and wafer centre; h and c can also be
aken as average values.

The FEA results are compared with the approximate results in
he case of the radial radiation at time ti = 88.33 min, after which
he surrounding temperature is held constant at Tsur = 800 ◦C.
i

ig. 8 shows that the average wafer temperature increases from
75.9 to 800 ◦C for around 120 min in the FEA simulations, and
or around 71 min using Eq. (14).

ig. 8. �t vs. the wafer temperature T. �t (min) is the time interval after the
oint ti, at which the surrounding temperature is held constant at 800 ◦C. T (◦C)
s the average wafer temperature reached at time ti + �t.
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ig. 9. The wafer temperature T vs. �t. �t (min) is the time interval after the
oint ti = 308.3 min, at which the wafer is placed at room temperature. T (◦C) is
he average wafer temperature reached at time ti + �t.

Another comparison is made for the cooling of the wafer at
oom temperature of T∞ = 20 ◦C. In the simulations, only con-
ection on the edges and on the front wafer surface was taken
nto account. Fig. 9 illustrates how the average wafer tempera-
ure decreases with the time upon cooling at room temperature;
bviously the results are very close.

. Thermal stresses

In the present study, the thermal stress analysis on the

nisotropic sapphire was performed for a non-linear thermo-
lastic orthotropic material. The values of E, μ and α were
upplied to the software in the material coordinate system
1x2x3, and the direction cosines of the material axes x1, x2 and

t
a
m
f

ig. 10. (a) Variation of the normal stress with time at four locations in the wafer, (b)
ime 246.7 min and (c) normal stress distribution in the sapphire wafer along the hori
rocessing Technology  194 (2007) 52–62 57

3 were provided with respect to the XYZ coordinate system.
he stress analysis shows that the wafer is in an almost axisym-
etric and plane stress state. The principal stresses are in the

adial and circumferential direction in the plane of the wafer.
f them, the largest tensile stress is of prime importance as it

an induce fracture failure. The highest tensile stress appears in
he middle of the flat edge, at time t = 246.7 min during cooling
own, when σYY = 108.2 MPa, Fig. 10(a). This figure also shows
he stress variation of the circumferential stresses at three more
oints, with time, trough the whole thermal history.

It can be seen that the circumferential stresses along the edge
re negative on heating up and positive during cooling down,
hereas at the wafer centre the radial stress has an opposite

ign, e.g., Fig. 10(a and b). The largest tension σ11 at the bottom
dge and on the sides are lower that at the top flat edge, around
4 MPa.

. Fracture in an R-plane wafer

Single crystal sapphire is not defect-free, some small cracks
r flaws can exist in a wafer, such as those induced by polishing
long the edges. It is essential for the process design to pre-
ict whether the initial defects will grow and lead to a fracture
ailure, or the defects will be stable. There are several fracture

heories that study the stability of an existing crack and its prop-
gation, e.g., [25]. In these studies, a crack is assumed in the
ost dangerous site and an analysis for the current load is per-

ormed to establish a characteristic quantity that will define the

normal stress distribution in the sapphire wafer along the vertical diameter, at
zontal diameter, at time 246.7 min.
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endency of the crack to extend. This quantity is compared with
n experimentally determined critical value, which measures
he material fracture toughness corresponding to the onset of
nstable fracture process.

The following two fracture theories will be used in the present
aper: (1) the maximum tensile stress criterion states that frac-
ure in an opening mode occurs at the point and in the direction
f the maximum tensile stress σ0, when σ0 reaches the critical
alue of σ0c = (EGc/πa)1/2 (according to Griffith theory), where
is the length of the pre-existing crack, γ is the energy required

o form a unit of a new material surface (fracture surface energy),
nd Gc = 2γ is the energy available for crack growth (fracture
nergy release rate). (2) The maximum stress intensity factor KI
heory states that fracture in an opening mode initiates when KI
t the crack tip reaches its critical value of KIc = (EGc)1/2.

While for isotropic materials, stress- and energy-based
racture criteria lead to similar results, for anisotropic mate-
ials this is not so. Anisotropic materials have directional
references—they are stronger in some directions and weaker in
thers. Moreover, single crystal materials have a discrete number
f cleavage planes and do not always fracture in the direction of
he highest tensile stress, but rather in the direction where a high
ensile stress acts on a weak cleavage plane. This was supported
xperimentally [26] and the results on notched A-plane sapphire
pecimens showed that the energy criterion fails to predict the
racture path of most of the specimens. A dimensionless param-
ter A was introduced to measure the onset of crack initiation.
n a notched sample A(N) = σξξ (2πR0/γλEξξ)1/2 where R0 is the
otch radius, σξ and Eξ are the tensile stress and Young’s mod-
lus in a direction ξ perpendicular to a cleavage plane λ, and
λ is the fracture surface energy of cleavage plane λ. The crack
ppeared at a point and in a direction where A(N) was maximum.
or specimens with pre-existing cracks, the crack kinked in the
irection where A(c) = KIξ/(γλEξξ)1/2 was maximum, where KI
s the stress intensity factor in the direction perpendicular to the
leavage plane. It was also shown that the fracture planes are
ctually the weakest families of cleavage planes, i.e., {1̄ 0 1 2}
nd {1 0 1̄ 0}.

It is evident that in anisotropic materials σ0c and KIc depend
n γλ of the cleavage plane along which the crack propagates.
eports on γλ of different cleavage planes in single crystal sap-
hire [26] show that the strongest plane is the basal c-plane
0 0 0 1) having γλ > 40 J/m2, and the weakest family of planes
s {1̄ 0 1 2} having γλ = 6 J/m2. The other families of cleavage
lanes are stronger: {1̄ 1̄ 2 6} with γλ = 24.2 J/m2 and {1 0 1̄ 0}
ith γλ = 7.3 J/m2. With these values of γλ, the critical stress

ntensity factor on a cleavage plane λ can be calculated as
Ic = (2Eξξγλ)1/2. However, the Young’s modulus in a direc-

ion normal to a cleavage plane Eξξ needs to be determined
rst, using the transformation rule of Eq. (5). This requires

he direction cosines of the cleavage plane, which can be cal-
ulated using coordinate geometry, in the following way. An
rbitrary plane has an equation in the xyz coordinate system of

he form

x

A
+ y

B
+ z

C
= 1 (15)

σ

p
a

s Processing Technology 194 (2007) 52–62

here A, B and C are the intercepts of the plane with the x, y and
axes, respectively.

The above equation can be re-arranged as

1x + b1y + c1z − 1 = 0, (16)

here a1 = 1/A, b1 = 1/B and c1 = 1/C are also the coordinates of
vector normal to the plane. The direction cosines of this vector
ith respect to x, y and z can be calculated as

l = a1√
a2

1 + b2
1 + c2

1

m = b1√
a2

1 + b2
1 + c2

1

n = c1√
a2

1 + b2
1 + c2

1

. (17)

The elastic modulus of sapphire along that normal vector is
lso needed; it can be found through the elastic constants in
oordinate system ξηζ, which includes the cleavage plane and
wo more normal planes. Let the cleavage plane be denoted by
, the direction of its normal vector by ξ, and the other two nor-
al vectors by η and ζ. After transforming the elastic matrix
from the xyz coordinate system into the ξηζ coordinate sys-

em, the Young’s modulus along the three normal vectors can be
alculated as Eξξ = 1/S(1,1), Eηη = 1/S(2,2) and Eζζ = 1/S(3,3).
he results for all cleavage planes are summarized in Table 1
elow. Note that a = 4.758 Å is the lattice constant (Fig. 1) and
= 12.991 Å is the crystal dimension along the optical c-axis.
able 1 also lists the surface energy γλ [26] and the critical
racture toughness KIc on all cleavage planes.

With known Young’s modulus perpendicular to cleavage
lane λ, one can assess the stability of a pre-existing crack
ocated in that plane, by applying the fracture theories. They all
equire however a characteristic value that measures the stress
tate, for example, the maximum tensile stress σ0 in the ξ-
irection. An assumption was made that a pre-existing crack
CC′′B′′ in an arbitrary cleavage plane λ is located at an arbi-

rary point along the wafer edge, Fig. 11 (point B is in the wafer
ace).

The crack has an initial length a = BB′′. Point B is specified
y angle δ, which is the angle between the Y-axis and the radius-
ector of point B. The cleavage plane makes an angle λ with the
afer plane, and intersects the wafer face at line AB making an

ngle α with the Y-axis. If the magnitude of the tensile stress
ormal to the cleavage plane σξξ is higher than the critical value
ecessary to break the inter-atomic bonds in the cleavage plane,
he crack will be unstable and will propagate in the BA direction.
n order to find σξξ , first the tensile stress σnn has to be calculated
n a direction normal to the intersection of the wafer plane and the
leavage plane, line AB, and then, the tensile stress component

ξξ can be obtained.

Thus, the line of intersection of the wafer plane with cleavage
lane λ, i.e., line BA, needs to be determined first, and then the
ngle between the wafer plane and cleavage plane, λ. The wafer
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Table 1
Young’s modulus, surface fracture energies, and KIC, for various cleavage planes

Cleavage plane � (1 1 2̄ 0) (1 1̄ 0 0) (0 1 1̄ 0) (0 0 0 1)

Intercepts with x, y, z axes
aλ a a ∞ ∞
bλ 2.74 −8.24 4.12 ∞
cλ ∞ ∞ ∞ 12.991

Eξξ (GPa) 431.2 431.2 431.2 456.5
γλ (J/m2) 7.3 7.3 7.3 40
KIc (MPa m1/2) 2.509 2.509 2.509 6.043

Cleavage plane ξ (1 0 1̄ 0) (0 1̄ 1 0) (1 2̄ 1 6) (1 1 2̄ 6)

Intercepts with x, y, z axes
aλ a ∞ a a
bλ 8.24 −4.121 −2.74 2.74
cλ ∞ ∞ c/6 c/6

Eξξ (GPa) 431.2 431.2 381.4 381.4
γλ (J/m2) 7.3 7.3 24.4 24.4
KIc (MPa m1/2) 2.509 2.509 4.314 4.314

Cleavage plane ξ (2 1̄ 1̄ 6) (1̄ 1̄ 2 6) (1̄ 2 1̄ 6) (2̄ 1 1 6)

Intercepts with x, y, z axes
aλ a/2 −a −a −a/2
bλ ∞ −2.74 2.74 ∞
cλ c/6 c/6 c/6 c/6

Eξξ (GPa) 381.4 381.4 381.4 381.4
γλ (J/m2) 24.4 24.4 24.4 24.4
KIc (MPa m1/2) 4.314 4.314 4.314 4.314

Cleavage plane ξ (1̄ 0 1 2) (1 0 1̄ 2) (0 1̄ 1 2) (1̄ 1 0 2) (0 1 1̄ 2)

Intercepts with x, y, z axes
aλ −a a ∞ −a ∞
bλ −8.24 8.24 −a cos(30) 8.24 a cos(30)
cλ c/2 c/2 c/2 c/2 c/2

Eξξ (GPa) 386.1 386.1 386.1 386.1 386.1
γλ (J/m2) 6 6 6 6 6
KIc (MPa m1/2) 2.152 2.152 2.152 2.152 2.152

Fig. 11. An arbitrary cleavage plane λ intersecting the wafer plane at plane
ABCD; λ is the angle of inclination of plane λ to the wafer plane; plane ABC′D′
is normal to the wafer plane; α is the angle between the intersection line AB (or
CD) and the Y-axis; n is the normal to plane ABC′D′; nξ is the normal to the
cleavage plane λ; σnn is the tensile stress acting normal to plane ABC′D′; σξξ is
the tensile stress in the ξ-direction acting normal to the cleavage plane λ.
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lane can be described by Eq. (16):

2x + b2y + c2z − 1 = 0. (18)

here a2, b2 and c2 are the coordinates of a vector normal to the
-plane. They can be found from the intercepts of the R-plane
ith the x, y and z coordinate axes (aR = 4.758 Å, bR = −8.241 Å

nd cR = c/2 = 6.496 Å), and are calculated as 0.21, −0.121 and
.154, respectively. The intersection line AB can than be defined
y a vector collinear to it. That collinear vector can be calculated
s the vector product of the two vectors that are normal to the
-plane and the cleavage plane. In the xyz coordinate system,

his reads:

�i �j �k
a1 b1 c1

a2 b2 c2

∣∣∣∣∣∣∣
= (b1c2 − b2c1)�i + (a2c1 − a1c2)�j

+ (a1b2 − a2b1)�k = p�i + q�j + r�k (19)

here �i, �jand �k are the unit vectors of the x, y and z coordi-
ate axes, respectively, and p, q and r are the coordinates of the
ollinear vector in the xyz coordinate system. Moreover, the Y-
xis has directional cosines of lY = −0.0251, mY = −0.802 and
Y = −0.5968. Thus, α can be found from

os α = plY + qmY + rnY√
(p2 + q2 + r2)(l2Y + m2

Y + n2
Y )

(20)

Eq. (20) leads to two angles, α and −α, having the same
irectional cosine. In order to define which is the right angle,
lso necessary is to calculate the angle between the intersection
nd the Z-axis, with the direction cosines of the Z-axis in the xyz
oordinate system being lZ = 0.682, mZ = 0.423 and nZ = −0.597.
n a similar way, the intersections of all cleavage planes with the
afer plane are located, and the results are presented in Table 2

nd Fig. 12.
Further, the angle between the wafer plane and cleavage plane

needs to be also determined. To do this, Eq. (20) can be applied
f p = a1, q = b1 and r = c1 (the normal vector to the cleavage
lane), and lY is substituted with a2, mY with b2, and nY with
2, respectively (the normal vector to the R-plane). The results
re provided in Table 2 for all cleavage planes. With the data
n Tables 1 and 2, one can now find KI and σξξ at the point of
he pre-existing crack, due to the applied load, and apply the

aximum tensile stress or the maximum stress intensity factor
racture theories. As already mentioned, the FEA simulations
howed that the largest tensile stress occurred at the wafer edge
uring cooling down; therefore a crack is expected to initiate
rom there. If the stress components at a particular point are
enoted by σYY, σZZ and σYZ, the stress component normal to
ine AB, σnn, is calculated as for a plane stress case:

nn = σYY + σZZ

2
+ σYY − σZZ

2
cos 2(α + π/2)
+ σYZ sin 2(α + π/2). (21)

he stress component σξξ then becomes:

ξξ = σnn sin2 λ. (22)
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Table 2
Angles α and λ for various cleavage planes

Cleavage
plane �

Angle between the
intersection of cleavage plane
and R-lane, α (◦), measured
from the Y-axis, Fig. 2(a)

Angle between the
cleavage plane and wafer
plane (R-plane), λ (◦)

Surface energy,
γλ (J/m2)

Critical fracture toughness,
KIc (MPa m1/2)

Young’s modulus in the
direction perpendicular
to cleavage plane, Eξξ

(0 0 0 1) 135 57.6 40 6.043 456.49
(1 1̄ 0 0) 135 32.4 7.3 2.509 431.24
(1 0 1̄ 0) 27.8 65.0 7.3 2.509 431.24
(0 1̄ 1 0) 62.2 65.0 7.3 2.509 431.24
(01 1̄ 0) 62.2 115.0 7.3 2.509 431.24
(1 2̄ 1 6) 2.1 27.3 24.4 4.314 381.39
(1 1 2̄ 6) 87.9 66.7 24.4 4.314 381.39
(2 1̄ 1̄ 6) 87.9 27.3 24.4 4.313 381.39
(1̄ 1̄ 2 6) 2.1 66.7 24.4 4.313 381.39
(1̄ 2 1̄ 6) 115.2 95.5 24.4 4.314 381.39
(2̄ 1 1 6) 154.8 95.5 24.4 4.314 381.39
(1̄ 0 1 2) 2.1 94.0 6 2.152 386.06
(1 0 1̄ 2) 62.2 50.0 6 2.152 386.06
(0 1̄ 1 2) 27.8 50.0 6 2.152 386.06
(1̄ 1 0 2) 135 115.2 6 2.152 386.06
(

E
m
c

σ

t
t
t
i
o
λ

p
p
p

a
a
a
t
a

0 1 1̄ 2) 87.9 94.0

xcept for the flat top part, the stress state in the wafer is axisym-
etric and Eq. (21) can be simplified bearing in mind that the

ircumferential stress is the first principal stress:

nn = σ11

2
(1 + cos 2(α − δ)). (23)

As mentioned in Section 3, the maximum tensile stresses on
he wafer edge appeared at time t = 246.7 min. At that point of
ime, Eqs. (21)–(23) are applied to a large number of points along

he wafer edge, and σξξ is calculated on all cleavage planes pass-
ng through the points. Of all σξξ at a point, one is the maximum
ne, σ0, acting on a cleavage plane making the largest angle
with the wafer plane. The stresses σ0 for a large number of

2
σ

a
i

Fig. 12. Intersections of various cl
6 2.152 386.06

oints around the wafer edge and the corresponding cleavage
lanes are found, and plotted in Fig. 13(a), in order to locate the
oint most likely to fracture under the thermal load.

It is obvious that the largest value of σ0 = 107.5 MPa occurs
t the midpoint of the top flat edge, i.e., point 4 in Fig. 13(a),
nd is perpendicular to cleavage plane (0 1 1̄ 2) having α = 87.9◦
nd λ = 94.0◦. According to the maximum tensile stress fracture
heory, that point is most likely to fracture first, then points 5
nd 4 at the top edge. The least likely points to fracture are point

and 6, located close to the top edge, where the principal stress
11 is lowest. At the bottom part of the wafer, the stress state is
xisymmetric and σ11 is of the same magnitude; despite that σ0
s different due to the discrete nature of the cleavage planes.

eavage planes and the wafer.
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Fig. 13. (a) Distribution of σ and max K /K along the wafer edge. Short lines
d
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order to determine the influence of the anisotropic nature of the
sapphire wafer. The first principal stress is circumferential, and
has the same magnitude at all points, σ11 = 54 MPa. The results
for σ0 and amin are presented in Fig. 14 below.
0 I Ic

enote the crack direction according to the σ0 criterion and (b) distribution of

min along the wafer edge. Short lines denote the crack direction.

Another way of locating the weakest and strongest points
long the wafer circumference is by calculating the stress
ntensity factor KI for the tensile stress σξξ on each cleavage
lane, and then comparing it with the critical value KIc. KI can
e determined as for a semi-infinite plate subjected to a uniform
ensile stress field, having an edge through crack under tension,
.g., [25]:

I = 1.12σξξ(πa)1/2. (24)

KIc has already been calculated and listed in Table 1 for all
leavage planes. It will be reasonable however, if the ratio KI/KIc
s used instead. Thus, among all cleavage planes passing through
he material point, the one having the largest ratio KI/KIc will be
he weakest. These calculations are performed for a number of
oints along the wafer circumference, for assumed a = 0.7 �m.
hen, the distribution of the largest ratios KI/KIc as well as

he crack direction according to the σ0 criterion, are plotted

n Fig. 13(a). At points where the weakest cleavage planes are
ifferent for the σ0 and KI/KIc criteria, both planes are listed in
he legend. If KIc was the same for all cleavage planes, both frac-
ure criteria would have provided the same results; however, the

F
l

rocessing Technology  194 (2007) 52–62 61

nisotropy of single crystal sapphire leads to different results.
his is due to the fact that the σ0 criterion dos not account for the
ifferent resistance of the different cleavage planes to fracture,
hile the KI/KIc criterion does.
Another fracture criterion that would provide the weakest and

trongest points along the wafer circumference is the minimum
ritical length amin that would initiate an unstable crack in a
articular cleavage plane. At a particular point along the edge,
nd in a particular cleavage plane, a critical crack length ac can
e calculated, which if exceeded by the pre-existing crack, the
rack will propagate. The value of ac can be determined for
he critical toughness KIc on cleavage plane λ and the stress
omponent σξξ normal to λ, using Eq. (24):

c = K2
Ic

(1.122πσ2
ξξ)

. (25)

Thus, for each cleavage planes λ passing through a point, a
ritical crack length ac exists. Among all critical crack lengths
c at the point, one is minimal, amin. This crack is most likely
o occur and it will be caused by a combination of a large ten-
ile stress component σξξ , and a weak plane λ having a small
Ic. This criterion is obviously inverse to the KI/KIc criterion
ecause it will provide the minimum value of ac where KI/KIc
s maximum. Fig. 13(b) below confirms that. The weakest point
ccording to the amin criterion is again at the middle of the flat
dge, and the strongest is at α = 45◦. If there is any source of
tress concentration causing additional tensile stresses, it will
ncrease the chance of wafer breakage. Stress concentration at
he locations of the weak points should be avoided, and the stress
oncentration factors should be located at the strongest points
nstead.

The present study also considered the fracture phenomenon
n a circular wafer subjected to the same thermal loading, in
ig. 14. Distribution of σ0 and amin along the edge of a circular wafer. Short
ines denote the crack direction according to the amin criterion.
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If the circular wafer was made of isotropic material, which
ould break in the plane of the maximum tensile stress, both
raphs in Fig. 14 would have been circular, and the crack direc-
ion would have been perpendicular to the wafer edge. Since
apphire is anisotropic and the cleavage planes have different
racture surface energies, even though the problem is axisym-
etric, the fracture planes are not always perpendicular to the

dge, and the critical crack length is not the same for all cleav-
ge planes. It is obvious that the graphs in Fig. 14 are symmetric
bout the axes having α = 45◦ (the image of the c-plane) and
= 135◦ (the a-axis). The strongest points (2 and 6) are the
nes along the image of the c-axis, which has α = 45◦. The
eakest points (1, 3, 5 and 7) are at ±45◦ to the image of

he c-axis, and at ±45◦ to the a-axis; the latter has α = −45◦.
he point at the a-axis (point 4 and 8) are of intermediate
trength.

. Conclusions

The present study shows that:

. An R-plane wafer made of single crystal sapphire can
be considered orthotropic in its plane, and perpendicular
to it.

. R-plane sapphire wafers have been found to fracture under
thermal shocks, predominantly perpendicular to the flat edge.
This fracture behaviour can be explained with a high level of
tensile stresses acting on a weak cleavage plane.

. To account for the anisotropy, a modified maximum stress
intensity factor criterion can be used, i.e., the maximum stress
intensity factor ratio KI/KIc criterion and its equivalent mini-
mum critical crack length amin criterion. Both criteria predict
the crack at the flat edge to propagate in the weakest plane
(0 1 1̄ 2).

. It was also found that the points at the sides of the flat edge
are the strongest and least prone to fracture. The influence of
sapphire anisotropy on its fracture behaviour can be clearly
seen in a circular wafer subjected to the same thermal loading.
The strongest points are located along the image of the c-axis,
and the weakest points are at 45◦ to the image of the c-axis
and to the a-axis.
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