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A~traet--This paper analyses the elastic wrinkling of an annular plate subjected to in-plane uniform 
tensile stress on its inner edge with the combined use of the Kantorovich method and Galerkin 
method, and discusses the appearance of wrinkles on the flange of a metal circular sheet during its 
axisymmetric deep-drawing operation. 

NOTATION 

a inner radius of an annular plate 
b outer radius of the annular plate 

undetermined coefficients in approximate wrinkling mode 
bending rigidity of plate 
Young's modulus 
a function of non-dimensional radial co-ordinate p 
functions of circumferential co-ordinate 0 
thickness of plate 
differential operators 
number of waves 
polar co-ordinates 
mode of wrinkling 
the parameter defined by equation (12) 
Poisson's ratio 
non-dimensional parameter, 1 - a/b 
the parameter defined by equation (3) 
non-dimensional radial co-ordinate, r/b 
stresses 
the function of p, defined by equation (13b) 
the parameters defined by equation (11) 

1. I N T R O D U C T I O N  

When  the inner edge o f  an annular  plate is loaded by an in-plane un i form tensile stress, the 
stress state o f  the plate, according to the theory  o f  elasticity, can be expressed as 

-- tr~a2 { b 2  - 1 ) ,  
tr r - b 2 _ a 2 ~k r 2 

/ 

e0 = b - ~ a 2  ~ - +  1 , (1) 

l ' r0 = 0 .  

As the circumferential  stress, ~o, is compress ive  and reaches its m a x i m u m  ampl i tude  on  the 
inner edge o f  the plate, see Fig. 1, elastic buckl ing will f i r s toccur  circumferentially,  when the 
un i form bounda ry  stress ~, reaches a critical value. Here  it is assumed that  the plate has not  
yielded. This appearance  is called elas t ic  wr ink l ing  (Fig. 2). 

Invest igat ion o f  wrinkling has a great  deal o f  significance in m a n y  branches  o f  mechanical  
engineering, especially in the axisymmetr ic  deep-drawing process o f  circular plates. 
Engineers require that  the flange o f  a workpiece in its deep-drawing operat ion should yield 
before elastic wrinkling occurs because otherwise it will impair  the quality o f  the product.  For  
this reason the wrinkling o f  an annula r  plate has been the focus o f  much  research a t tent ion 
over  m a n y  decades. Geckeler  [1] simplified the p rob lem and treated it by a one-dimensional  
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I 

FIG. 1. An annular plate subjected to a uniform tensile stress on its.inner edge. 

(a)  
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FIG. 2. (a) A typical deep-drawing device. (b) The wrinkling of a flange. 

model, furnishing some formulae to predict the critical circumferential stress and the 
number of waves. His model was employed and extended by many other experts afterward 
[2-4]. However, Yu and Johnson [5-1 realized the limitation of Geckeler's one-dimensional 
model and studied the problem using a two-dimensional one by means of the energy method. 
However, their results may still be too simplistic for general application. 

The principal weakness of the approximate analyses as outlined above is that they do not 
consider the effect of elastic wrinkling of the workpiece apart from that by Yu and Johnson in 
Ref. [5]. Furthermore, available solutions about the elastic buckling of annular plates [6-8-1 
cannot be applied to the deep-drawing operation. In order to make up for this weakness we 
now furnish some relatively accurate analytical results for the deep-drawing operation and 
discuss the method to solve wrinkling. The present paper analyzes the title problem with the 
combined use of the methods of Kantorovich and Galerkin [9] and suggests approaches to 
improve the accuracy of the approximate solutions. In addition, the way to overcome the 
appearance of elastic wrinkling in the deep-drawing process is discussed. 

2. S O L U T I O N  

2.1 Critical circumferential stresses 
Consider an annular plate with inner radius a, outer radius b and thickness h. The inner 

edge of the plate is subjected to a uniform in-plane tensile stress aa, see Fig. 1. The differential 
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equation for the buckling of  such a plate in polar co-ordinates is [10] 

[ 02w _ 0 [ ldw' \  f l o w  1 02w'\ -] 

where D = Eh3/12(1 - v 2) is the bending rigidity, w is the deflection describing the wrinkling 
for the middle plane and the operator V, 4 is defined by 

/ 0  2 1 0 1 0 2 ~2 
v ;  = 

Substituting expression (1) into equation (2) and letting 

a2b2haa 
~1 = D ( b 2  _ a2 ), (3) 

we get 
/ 1  2 1--2 ) V, aw + ~1 ~ - V , ,  w -  ~-2-V, w .  = 0, (4) 
\ 

where 
V, 2 = 0 2 1 0 1 0 2 

0r 2 r 0r r 2 002. 

By using a non-dimensional co-ordinate p = r/b, equation (4) can be re-written as 

V 4 w + ~ l ( ~ V 2 w - V 2 w ) = 0 ,  (5) 

in which 
W = V z" V e, 

~2 1 0 1 d 2 

d 2 1 d 1 0 2 
and V 2 = - -  

Op 2 p 0p p2002. 

To obtain an approximate solution of  equation (5), let 

w = Wo (p, 0) = A ~O)go (0), (6) 

where go (0) should be a periodic function according to experimental observations. First, we 
consider an annular plate with a simply supported inner edge and a free outer edge and take 

go(0) =cos(n0),  (n = 0 , 1 , 2  . . . .  ), (7) 

where n is the number of  waves in a given wrinkling mode. Obviously, the case n = 0 
corresponds to the axisymmetric buckling mode. With the help of  the well-known 
Kantorovich method [9] we obtain the following ordinary differential equation from 
equation (5) 

f~o4~ + 2  fd,, + ( ~ - 2n2 - 1 p2 ~ ) f ~ - l (  ~ - 2 n 2 -  1 pZ dj, )/"~ 

n2 [~1 -4- n 2 -- 4 '~ 
)fo : o. p2 p-k 

(8) 

Ifn = 0 or b ~ oo, the above equation can be simplified and exact solutions are then obtained 
(see the Appendix). To derive an approximate solution of  equation (8), we use the well-known 
Galerkin method. 
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The boundary conditions of this problem can be expressed as, 

at p = a/b, Jo = 0, (9a) 

a t p  1 anda /b ,  f,~ v , vn 2 = + o f o  - ~5-fo = 0 ,  (9b) 

1 
at p = 1, f~' + p f ~  - [(1 + 2n z - vn2)/p2]f'o 

+ [nZ( 3 - v)/P31 ]fo = 0. (9c) 

From the loading state of  the plate the radial resultant bending moment M, should be zero 
through the plate. Therefore we may take 

fo (P) = pO [cl cos (co lnp) + cz sin (co In p)], (10) 

in which 

O = ½ ( 1 - v )  and c o = - } x / 4 v n Z - ( 1 - v )  2, (11) 

where v is Poisson's ratio for the material and qJ and co are positive constants for metals (so 
long as v/> 0.17). Expression (10)satisfies condition (9b)automatically. Substituting (10)into 
(9a) gives 

C 2 : (~C 1 

6 = - cot [co In (a/b)]. 
where 

Then, (10) can be rewritten as 

(12) 

fo (P) = cl p~ [cos (co In p) + 6 sin (co In p)]. (13a) 

For the sake of  convenience we release the condition (9c) for the time being [11]. Letting 

fo (P) =- ClOo(p) - clP(p)Q(p),  (13b) 

where 
P(p) = p*, 

Q(p) = cos (co In p) + 6 sin (o9 In p), 

and 
Oo (p) = P(p)Q (p), 

we get the following equation with the help of  the Galerkin method 

fa ~ [L~fo(p)+ ~ (L2fo(p))]~o(p)dp = O, /b 
i.e. 

(13c) 

(14a)  

D 
a2 fa/b ( L 2 ~ ° ) ~ ° d P  

o r  

(15b) 

~a 1 
tTab2h b2 - a  2 (LlOo)~odp /b 

fa ~ [L~ ~o + ~ (Lz~o)]~odpc~ = 0. (14b) /b 

The integral in the above equation must be zero if we require a non-trivial solution of  form 
(13a). This yields 

f l (L100)tI)odp 
~1 = - /b (15a) 

f l (L2Oo)Oo do 
/b 
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In the above equations, Lt and L2 denote operators which can be expressed as 

and 

d 4 2 d a 2 n 2 + l ( d  2 1 d ) + n 2 ( n 2 - 4 )  
L1 = d-~p4 -~ p dp3 p2 d-p-'p2 p~p p4 , 

L 2 = ( ~ 2 _ l ~ d 2  _ 1 ( 1  "~ d n2[ 1 ) 
]dp  2 p \ p 2 + X ) - ~ p + - p ~ - ~ + l  . (16) 

The approximate value of the circumferential stress, which is dependent on the dimensions of 
the annular plate, the number of waves and the elastic constants of the material, can easily be 
obtained by the substitution of equation (13) into (15). 

In the case of the deep-drawing process, condition (9c) is no longer valid. However, the 
wrinkling mode must satisfy 

w >/O. (17) 

For this reason we take 

where 

and 

Wo = fog~ =fo(p)(1 + go(O)), (18) 

1 + go (0) = 1 + cos (nO) >1 0 

A (p)/> 0. 

The proof of the latter inequality will be found in the Appendix. Equation (15) still holds 
when a derivation similar to that mentioned above has been carried out, so long as L1 and L2 
in the equation are replaced by the following expressions 

d 4 6 d  a 2 n 2 + 3 (  d 2 l d )  n2(n2-4) 
L*=2d~p4+ p d p  3 p2 ~pp2 p~p  + p4 

and 
L $ = 2 (  1 ) d2 2 / 1  ' \ d  n2 /1  \ 

2.2 Yield condition 
For elastic-perfectly plastic material of yield stress Y, the Tresca yield condition gives 

a , - a o  = Y, 

as the relation a, > a~ = 0 > a0 is noted. Thus for yielding, 

20" a a 2 
(b 2 - a2)p 2 - Y, 

and the left-hand side of the above equation reaches its maximum value when p attains a/b so 
that yield occurs first at the inner edge of the annular plate. This is in accordance with how 
wrinkling actually occurs. Thus the yield condition gives, 

t r a b 2 h  _ Yh (b 2 - a 2) (20) 
D 2D 

3. DISCUSSION AND CONCLUSIONS 

The diagrams of non-dimensional critical stress, aab2h/D, and the number of waves, n, 
against ~ = 1 - a / b  can be drawn easily from expression (15). In all calculations v = 0.3 is 
taken. Figure 3(a) and 4(a) are obtained using the wrinkling mode defined by equation (6), 
whilst Fig. 3(b) and 4(b) are derived from the mode given by equation (18). Figure 3 shows 
that the critical stress decreases gradually with increasing inner radius a when outer radius b is 
held constant. However, the number of waves, n, increases gradually in this case. It is obvious 
from the tendency of these critical curves that the values of the critical stresses corresponding 



734 T.X. Yu and L. C. ZHANG 

120 _(Q) I'O / / / / 

IO0 / / / / 
/ / I I 

90 6 /  5, 4 /  3 1 n - 2 j  
8o n /  / / / / 

$ I I ,( ," / ,, / 
~o~ 60 , \ / . ~  / , / 

', , ,  , ," 

2o ~ 
I0 

I I I I I I l 
0 O. I 0.2 0.3 0.4 0.5 0.6 0.7 08 

~ . I - o / b  

140 

120 

I00 

~ 80 

6O 

40 

20 

b• I I ;  / I 
' ~I 6/5/4/  / . . 3  

/ t l I I 
• u I I I I 

I I l I I l / 
I I I l I . i 
I %! I ! / / 
I I I . / . , , /  
l , "  P.IJV" 

I I l " /  " 7  I. \ / /  / /  

I I I I I I 1 
o o.i 02  03  0.4 o.5 0.6 0.7 o.e 

FiG. 3. Critical curves of annular plates: (a) results from wrinkling mode, equation (6); (b) results 
from wrinkling mode, equation (18). 
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FIG. 4. The number of waves: (a) results from wrinkling mode, equation (6); (b) results from 
wrinkling mode, equation (18). 
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FIG. 5. A map showing wrinkling region and yielding region. 

to the two neighbouring wave numbers are almost the same with increasing ratio a/b, see 
curves FI and F2 in Fig. 5. It follows that for a sufficiently large value of a/b of the flange in 
the deep-drawing operation, the number n cannot be predicted accurately since there exist 
many disturbances during operation. 

Generally, engineers hope that a flange will yield without the difficulties arising from 
elastic wrinkling. Figure 5 shows the restrictive conditions for guarantee of this requirement. 
Curves F~ and r 2 are the critical curves of elastic wrinkling corresponding to the mode of 
equations (6) and (18), respectively. The region above the curve F~ or F2 for a different 
wrinkling mode is the wrinkling region and that below the curve corresponds to no- 
wrinkling. The dotted curves are yield critical curves for workpieces with various values of 
ratio h/b. When the values of trab2h/D fall below a dotted curve, the flange of the 
corresponding workpiece is in an elastic state, otherwise, it yields. These curves are obtained 
by taking E/Y = 500. It is seen from curve F2 that for a given material with E/Y = 500 and v 
= 0.3, workpieces with h/b = 0.025, 0.020, etc., can yield without trouble from elastic 
wrinkling, but for that with h/b = 0.015 this expected process can be guaranteed only if0 < 
~< (* or (** ~< ¢ < 1. Thus, it is concluded that the smaller is h/b, the more easily elastic 
wrinkling occurs. Figure 5 should be very useful for engineers in designing deep-drawing 
processes. 

F2 is above F1 and the distance between them is relative large. This shows that support of  
the die increases the critical stress. Hence it is expected that F2 will be raised again ifa blank- 
holder is employed [see Fig. 2(a)]. Moreover, Figs 3 and 4 indicate that the support of the die 
makes the number of waves increase. This appearance becomes more evident in a deep- 
drawing process with a blank-holder and the conclusion is in agreement with that of Johnson 
and Mellor [12]. 

A comparison is made in Fig. 5 between F2 obtained by the present analysis and F3 by the 
energy method [5]. It should be noted that F2 is always below F 3 . It may also be observed 
that the increasing critical stresses showed by F3, when ~ < 0.3, is not reasonable. Our 
present results are more reasonable and more precise, and the method is more convenient. 

Finally, we suggest the following two approaches to improve approximate solutions still 
further, 

(1) Let J~(p)= CoePo+Cl¢#~ + " "  +CmOm, where Oi(i = 0, 1 . . . . .  m) satisfy certain 
conditions [9]. Then the Galerkin equation will yield 

~a ~ [Llfo+~(L2fo)]dP, dp = 0 (i = O, 1 m). 
/b 

A more accurate solution than before can now be obtained by taking the determinant of the 
above equations to be equal to zero. 

(2) The extended Kantorovich method [13] can be employed to find a better wrinkling 
mode. 
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A P P E N D I X  

(1) Exact solutions of equation (8) 
These can be obtained for the following two special cases: 

(i) b --, 
In this case we find, 

where 

~ - 2 n 2 - 1 ( f  ! ) n2(¢+n2-4)fo 
f~,, + 2_f~,r + r 2 ~ - f'o + r" = O, 

= -- traa2h/D. 

This is an Eulerian equation which has a solution of the form 

fo = P,  [At sin(col lnp , )  + A 2 cos(to2 lnp ,  ) + A3sh (col In p , )  + A4ch(co 2 in p,)] ,  

in which p ,  = r/a, 
col = x/½( - (1 + n2)+ x/2n2 (2 - () + ¼¢2 

and 

(ii) n = 0 
The buckling mode in this case is axisymmetric. Hence we get 

The equation can be integrated once and then the expression f'o/(1 -~1 ) replaced by F. This procedure gives 

1 ( 1 ) F C  (A1) F"+-F'+r '~-~- =; '  

where 
;~ = - ~ , / [ ( 1  - ¢ , ) b ~ ]  

and c is a constant. The homogeneous equation of equation (A 1) is a Bessel equation. Hence it can easily be solved. 

(2) The explanation of inequality fo (P) >/0 
According to (13), equation A (p) = 0 yields 

cot[coln(a/b)] = cot[coln(r/b)]. 
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The roots of  this equation are 

r = a e  2kn/[4vn2-(1-v)2]½, (k = 0, 1, 2, .  . .). 

Obviously, k = 0 makes r = a. The requirement offo(p) t> 0 is equivalent to 

e21t /[4vn2 - (1 - v)2] ½ /> b. 

This inequality is satisfied throughout the present calculations. 


