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Abstract. Machining of metals is characterised by plastic deformation occurring at high strains, 

strain-rates and temperatures. In the few predictive machining theories reported in literature, two 

types of constitutive equations, the power-law relation and Johnson-Cook equation, have mainly 

been used for describing the material’s plastic behaviour. This paper aims at assessing the above 

constitutive equations in terms of their ability to describe the material behaviour for a wide range of 

strain-rates and temperatures encountered in machining. The focus is on the plain carbon steel and 

copper work materials. Using the above constitutive equations, flow stress results were determined 

for conditions encountered in machining and then compared with experimental results obtained 

from literature which are compatible with the rate equations applicable to the microscopic 

deformation mechanisms under considered conditions. It was concluded that considerable 

improvements are required for the aforementioned constitutive equations for accurate prediction of 

the work material behaviour under machining conditions and that further development is needed for 

more reliable and accurate constitutive equations. 

 

Introduction 

The mechanics of machining investigates the deformation of a workpiece subjected to machining, 

such as chip formation, machining forces, residual stresses, temperature effects, strain rate effects 

and surface integrity. An important aspect of the investigation is to provide an in-depth 

understanding of the theoretical relationships for cutting forces, temperatures, stresses, etc in terms 

of work material properties, tool geometry and machining conditions. These relationships are then 

used to predict process parameters such as power requirements and tool life. 

During a chip formation process plastic deformation mainly occurs in two regions. These are the 

primary deformation zone where the chip is formed and secondary deformation zone which arises 

because of frictional conditions at the tool chip interface. In analytical studies of machining, 

deformation processes occurring at these plastic zones are quantitatively analysed. One of the major 

difficulties encountered in these studies is the lack of suitable constitutive equations to describe 

accurately the variations of flow stress with strain, strain-rate and temperature and the lack of data 

for the extreme conditions of strain, strain rate and temperature encountered in machining. For 

example, during machining of plain carbon steels under practical conditions, typical values of 

strains are 1-2 in the primary deformation zone and above 3 in the secondary deformation zone, 

while strain rates are 10
3
 - 10

6
 s

-1
 in both zones and temperatures are 200 to 400 °C in the primary 

deformation zone and 800-1200 °C at the tool chip interface [1]. Despite the above difficulties, 

commendable attempts for developing predictive methods have been reported. In these predictive 

methods, two of the commonly used constitutive equations are the empirical or power law stress 

strain relation and Johnson-Cook equation. The power-law relation has so far been applied for plain 

carbon steel [1] and aluminium alloy [2] work materials. Johnson-Cook equation [3] has been 

applied for the above two work materials and hardened steel. 

 For the high strain-rates encountered in machining, the microscopic deformation mechanisms 

involved are best described by plasticity limited by electron and phonon drags and relativistic 

effects at low temperatures and power law break down at high temperatures [4]. Approximate rate 
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equations that would describe the above deformation mechanisms are also given in [4]. However, as 

pointed out by Harding [5], a constitutive equation that would accurately describe the macroscopic 

plastic behaviour of a material while soundly based on the microscopic deformation processes is 

still some way from being achieved. Although more scientifically justifiable semi-empirical 

constitutive equations are available, the very extensive experiments required for them have 

compelled researchers to choose more empirically based relations such as those mentioned above. 

The present paper aims at critically assessing the power-law and Johnson-Cook constitutive 

equations in terms of their ability to describe the material behaviour for a wide range of strain rates 

and temperatures encountered in machining. Due to the availability of the experimental data and 

empirical constants of these constitutive equations, focus of the present work is on the plain carbon 

steel and copper work materials. For these high strain rates, experimental flow stress results which 

are in agreement with the relevant rate equations (describing the deformation mechanisms involved) 

have been obtained from literature. These flow stress results are then compared with those predicted 

from the above constitutive equations under identical/similar conditions. Based on these 

comparisons, further research required for the development of more reliable constitutive equations 

for predictive machining theories are suggested. The following sections start with a review of the 

aforementioned two types of constitutive equations. 

 

The power-law stress-strain relation 

This type of equation was originally used in a machining theory for plain carbon steel work 

materials by Oxley and his co-workers [1, 6]. This relation is given by 

n
Kε=σ            (1) 

where σ is uniaxial flow stress, ε is uniaxial strain, K is strength coefficient and n is strain 

hardening exponent. Both K and n are assumed to be functions of strain-rate and temperature. A 

brief review of the development of this equation is as follows. 

 Oxley used the flow stress data obtained by Oyane et al [7] for plain carbon steels (with 0.16%, 

0.33%, 0.49% and 0.52% carbon) from high speed  compression tests carried out at strain rate 450 

s
-1

 for a temperature range 0-1100 °C and strains up to 1 or more. Although the strain-rates used in 

these  tests were much lower than those  encountered in  machining (10
3
 to 10

6
 s

-1
), the use of the 

velocity modified temperature concept allowed Oxley to extrapolate these flow stress data to the 

machining range. That is, for Eq.1, it was assumed that for a given strain ε, the flow stress for a 

particular material is a unique function of the velocity modified temperature Tmod defined as 

 )](1[ o
..

mod /ln  TT εεν−=  

where T is absolute temperature, 
.
ε  is the direct strain rate and ν and o

.
ε ( 1-s1 = ) are constants. 

 At a given temperature, for each of the plain carbon steels considered, results of Oyane et al [7] 

were used to determine K and n in Eq.1. The values of K and n thus obtained were then plotted 

against Tmod (with ν=0.09) to obtain curves representing the flow stress properties of each of the 

steel. By representing these curves mathematically and using rescaling functions, continuous 

changes in K and n over the ranges of Tmod and carbon content considered were represented by a set 

of functions. From these functions given in [1], the K and n curves obtained for plain carbon steels 

with 0.12% and 0.45% carbon are given in Fig.1. Oxley has used this type of curves in his 

machining theory for predicting the flow stress at given values of strains, strain-rates and 

temperatures. 

 

Johnson-Cook constitutive equation 

In this equation, the von Mises yield stress is expressed as [3] 
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Fig.1  Variations of K and n with Tmod for 0.12% and 0.45% carbon steels 
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where *
.
ε  is the ratio o

..
/ εε  (with 1-

o s1 
.

=ε ) and T
*
 is the ratio (T-Tr)/(Tm-Tr) with Tr and Tm being 

absolute room and melting temperatures respectively. A, B, C, n and m are material constants. The 

expression in the first set of brackets represents power-law work hardening curve with n assumed to 

be constant. The expression in the second set of brackets represents the semi-logarithmic 

dependence of stress on strain rate while that in the third set of brackets represents the reduction in 

strength due to the increase in temperature (thermal softening) resulting from plastic work. Johnson 

and Cook [3] obtained these material constants for oxygen free high conductivity (OFHC) copper, 

armco iron and AISI-4340 steel. The required experimental data were obtained from torsion tests, 

Hopkinson bar tests and tensile tests. It is noteworthy that the highest strain-rate reached during 

these tests was 650 s
-1

. 

 Thus it can be seen that the highest strain rates tested in [3, 7] were well below 1000 s
-1

. The 

results from these tests were used to determine the constants of Eq.1 and Eq.2 which were 

subsequently applied at very high strain rates (10
3
 to 10

6
 s

-1
). Hence the present work now 

investigates the predictive capability of the above constitutive equations at these high strain rates. 

 

Plastic deformation at high strain-rates 

As pointed out by Frost and Ashby [4], crystalline solids deform plastically by a number of 

alternative, often competing deformation mechanisms. For machining of metals under practical 

conditions, where strain rates are in the range 10
3
 - 10

6
 s

-1
, the relevant deformation mechanisms are 

phonon and electron drags and relativistic effects at low temperatures and power law breakdown at 

high temperatures. While these authors have given approximate model based rate equations that 

would describe the above deformation mechanisms, they have also pointed out that the major 

difficulty encountered is the non-availability of appropriate experimental data. Utilising the 

published experimental data for copper, aluminium and titanium, they have shown that, at low 

temperatures
1
, for a substantial portion (at the lower end) of the strain rate range 10

3
 - 10

6
 s

-1
, a 

linear relationship between flow stress and strain-rate should exist due to the dominance of phonon 

and electron drags. However, at very high strain rates, eg. When approaching 10
6
 s

-1
, the above 

relationship appears to deviate from the linear one due to relativistic effects, etc [4]. Notably, 

                                                           
1
 In the present work, these low temperatures are assumed to be those below 0.5×Tm where Tm is the absolute melting 

temperature of the material 
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Ferguson et al [8], Kumar et al [9], Kumar and Kumble [10] and Campbell and Ferguson [11] 

obtained experimental data at the lower end of the above strain rate range that shows a linear 

relationship between flow stress and strain rate. The work materials considered in the above 

investigations were mono-crystalline zinc [8], aluminium (mono-/poly-crystalline) [9], OFHC 

copper [10] and plain carbon steel with 0.12% carbon [11]. These experimental flow stress results 

are now compared with those predicted using the power-law relation (Eq.1) and Johnson-Cook 

equation (Eq.2) for materials for which required constants can also be found from literature. 

 

Comparison between predicted and experimental results 

For a plain carbon steel (0.12%C), Campbell and Ferguson [11] have determined the lower yield 

point using  dynamic shear tests of Kolsky thin-wafer type for wide ranges of strain-rates  (10
-3

 to 

4×10
4
 s

-1
) and temperatures (195-713 K). Using their experimental results for the high strain rates, 

the uniaxial flow stress and strain rate values have been calculated by the present authors. In these 

calculations, the von Mises yield criterion is assumed. The calculated results are depicted in Fig.2 

by symbols with the thin lines representing the linear regression lines fitted to each set of 

experimental data corresponding to a particular temperature. It can be seen that Campbell and 

Ferguson’s experimental results can be represented very well by a linear relationship which is also 

in agreement with the rate equations relevant to the applicable deformation mechanism mentioned 

above. The thick curves in Fig.2 represent the flow stress results predicted from Eq.1 using the 

corresponding curves for K and n given in Fig.1. It can be seen that the predicted results show a 

much lower rate of increase in flow stress with strain-rate than that indicated by the experimental 

results. The predicted variation of flow stress with temperature appears to be reasonable. However, 

for this plain carbon steel, it is not possible to compare the predicted flow stress results using 

Johnson-Cook equation (Eq.2) since the required constants are not available. 

 For plain carbon steel with 0.45% carbon, Jaspers and Dautzenberg [12] have determined the 

constants of the Johnson-Cook equation using the data obtained from their experiments. The 

experimental data at high strain rates (up to 7.5×10
3
 s

-1
) were obtained from split Hopkinson 

pressure bar technique for temperatures up to 500 °C and uniaxial strains up to 0.3. The obtained 

constants of Eq.2 are: A=553.1 MPa, B=600.8 MPa, C=0.0134, n=0.234, m=1. Using these 

constants and Eq.2 (with Tm=1733 K), the present authors have predicted the flow stress results at 

high strain rates (5000 to 30,000 s
-1

) and at strain 0.05 and temperatures 20, 220 and 440 °C. These 

results together with those predicted using the power-law relation (Eq.1) are given in Fig.3. For 

obtaining the latter results, the corresponding K and n curves given in Fig.1 were used. It can be 

seen that the difference between the flow stress results determined from Eq.1 and Eq.2 is greatest at 

low temperatures. These differences can be seen to decrease with increase in temperature. More 

importantly, both Eq.1 and Eq.2 seem to predict a very low rate of increase in flow stress with strain 

rate. However, based on the results in Fig.2 (compared to experimental results, Eq.1 was found to 

predict a lower rate of increase in flow stress with strain rate), Eq.1 and Eq.2 appear to considerably 

underestimate this rate of increase. Moreover, Eq.2 appears to predict a lower rate of increase in 

flow stress with strain rate than that predicted by Eq.1. This indicates possible greater 

underestimations of the flow stress from Eq.2 than from Eq.1. For the considered steel and strain 

rate range, the authors were unable to find experimental data to compare with the predicted results. 

 For annealed and work hardened OFHC copper, experimental flow stress results have been given 

by Kumar and Kumble [10] for uniaxial strains up to 0.1, temperatures in the range 300-590 K and 

strain rates up to 5000 s
-1

. According to their data, for strain rates above 500 s
-1

, a clear linear 

relationship can be seen between the flow stress and strain rate. As noted earlier, Johnson and Cook 

[3] have determined the constants of Eq.2 for OFHC copper as follows: A=90 MPa, B=292 MPa, 

C=0.025, n=0.31 and m=1.09. They have then used these constants for predicting flow stress for 

strain rates up to 10
5
 s

-1
. Using these constants and Eq.2 (with Tm=1356 K), the present authors have 

predicted the flow stress results at high strain rates (500-5000 s
-1

), temperature 300 K and strains 

0.02 and 0.04, as depicted in Fig.4. It can be seen that the predicted stress versus strain rate relation 

deviate from the expected linear relation. A quantitative comparison between these predicted results 
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Fig.2. Variation of flow stress with strain rate and 

comparison between predicted and experimental 

results (ε=0.0058) 

Fig.3. Predicted flow stress versus strain-rate 

results for 0.45% carbon steel (ε=0.05) 
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Fig.4. Predicted flow stress versus strain rate results 

for OFHC copper at temperature 300 K 

Fig.5. Predicted flow stress versus temperature 

results for 0.45%C steel at strain-rate 7500 s
-1

 

 

and experimental results (from [10]) is not possible since the present authors were not able to obtain 

the details of the heat treatment used for the copper materials considered in [10] and [3]. 

 So far this paper has considered the predicted/experimental flow stress versus strain rate relation 

for the high strain rates applicable to plastic deformation in machining. When assessing the 

constitutive equations used in machining, it is also necessary to consider the relation between flow 

stress and strain and that between flow stress and temperature at these high strain rates. The major 

difficulty encountered in these considerations is the scarcity of the required experimental data. It 

was noted that Jaspers and Dautzenberg [12] have given the experimental flow stress results for 

0.45% carbon steel at strain rate 7500 s
-1

 for strains in the range 0.05-0.2 and temperatures in the 

range 50-600 °C. For all strain values considered, their experimental results show a decrease in flow 

stress with increase in temperature up to ~500 °C. Above this temperature, flow stress shows an 

increase with increase in temperature
2
. For the above conditions, the present authors have predicted 

the flow stress versus temperature results using the power-law relation (Eq.1 with the corresponding 

                                                           
2
 This particular increase in flow stress with increasing temperature known as dynamic strain aging or blue brittleness is 

typical of plain carbon steels. 
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K and n curves from Fig.1) and Johnson-Cook equation (Eq.2). These results are shown in Fig.5. It 

can be seen that only Eq.1 can correctly predict the increasing trend of flow stress with increasing 

temperature above ~500 °C. Note that the experimental results given in [12] are not included in 

Fig.5 since it is very likely that these results were used by Jaspers and Dautzenberg for obtaining 

the empirical constants of Eq.2 which were used in determining the curves 4, 5 and 6 in Fig.5. 

In this paper, for the high strain rates encountered in machining, comparisons between predicted 

and experimental flow stress results and those between predictions from Eq.1 and Eq.2 have been 

presented. These comparisons are not as comprehensive as the authors have intended because of the 

non-availability of the required experimental data
3
 and/or empirical constants of the constitutive 

equations. Nevertheless, the presented results for plain carbon steels show that the power-law 

relation (Eq.1) is able to represent the experimentally observed variations of flow stress with strain-

rates and temperatures more accurately than Eq.2. This is possibly due to (i) expression of K and n 

of Eq.1 as 7
th

 order polynomials of Tmod which is function of temperature and logarithmic strain rate 

and (ii) comprehensive procedure used in determining the required empirical constants [1]. 

 

Conclusions 

As discussed in this paper, for many metallic work materials, at low temperatures, substantial 

experimental evidence can be found from published literature that indicates a clear linear 

relationship between the flow stress and strain rate for the lower part of the strain rate range (10
3
 - 

10
6
 s

-1
) encountered in machining. This linear relationship has been explained using the 

microscopic deformation mechanism electron and phonon drag. The presented results for plain 

carbon steels show that the considered power-law relation (Eq.1) is able to represent the variations 

of flow stress with strain-rates and temperatures with better accuracy than Eq.2. However, the given 

results also show that considerable improvements are needed for these constitutive equations for 

accurate prediction of flow stress under machining conditions. It seems, despite considerable 

research during the last 60 years or so, there is no sufficient data, particularly for the very high 

strain rates and temperatures, which are required for the development of reliable constitutive 

equations suitable for predictive theories of machining. 

 

Acknowledgments 

The authors wish to thank the Australian Research Council for financial assistance to this research. 

 

References 

[1] P.L.B. Oxley, The Mechanics of Machining: An Analytical Approach to Assessing 

Machinability, Ellis Horwood, Chichester, 1989. 

[2] B. Kristyanto, P. Mathew and J. A. Arsecularatne, Int. J. Machining Science and Technology, 

Vol 6 No 3, (2002), p. 365 

[3] G.R. Johnson and W.H. Cook, Engineering Fracture Mechanics, Vol 21 No 1 (1985), p. 31 

[4] H.J. Frost and M.F. Ashby, Deformation mechanism maps: The plasticity and creep of metals 

and ceramics, Pergamon, 1982. 

[5] J. Harding, Int. Conf. Mech. Prop. Materials at High Rates of Strain, Oxford (1989), p. 189 

[6] W.F. Hastings, P. Mathew and P.L.B. Oxley, Proc. R. Soc. Lond. Vol A371 (1980), p. 569 

[7] M. Oyane, F. Takashima, K. Osakada, and H. Tanaka, Proc 10
th

 Japan Congress on Testing 

Materials, (1967), p. 75 

[8] W.G. Ferguson, F.E. Hauser and J.E. Dorn, Brit. J. Appl. Phys., Vol. 18 (1967), p. 411 

[9] A. Kumar, F.E. Hauser and J.E. Dorn, Acta Metallurgica, Vol. 16 (1968), p. 1189 

[10] A. Kumar and R.G. Kumble, J. Appl. Phys., Vol. 40, No. 9 (1969), p. 3475 

[11] J.D. Campbell and W.G. Ferguson, Phil. Mag., Vol 21 (8
th

 Series), (1970), p. 63 

[12] S.P.F.C. Jaspers and J.H. Dautzenberg, J. Mat. Process. Technol., Vol. 122 (2002), p. 322 

                                                           
3
 Unfortunately for strain rates above 50000 s

-1
 and temperatures above 0.5×Tm authors were unable to find reliable 

experimental data for the considered materials. 

282 Advances in Engineering Plasticity and Its Applications

http://www.scientific.net/feedback/25065
http://www.scientific.net/feedback/25065


Advances in Engineering Plasticity and Its Applications 
doi:10.4028/www.scientific.net/KEM.274-276 
 
Assessment of Constitutive Equations Used in Machining 
doi:10.4028/www.scientific.net/KEM.274-276.277

http://www.scientific.net/feedback/25065
http://www.scientific.net/feedback/25065

