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Industrial Summary

Springback is one of the fundamental factors affecting the quality of a stamped component. It has been recognised that springback
can be controlled more easily when using an elastic die in a stamping process. However, the deformation of the die introduces more
complex mechanisms of springback and an in-depth understanding of such processes is still lacking. This paper developed an analytical
solution to the springback of sheet metals stamped by a rigid punch and an elastic die under plane-stress deformation. The stamping
process was modelled as a three-body contact problem. The sheet workpiece was divided into three parts according to its contact with
the punch and die. The workpiece material was considered to be elastic/perfectly plastic. Based on the solution obtained, the effects of
the most important processing factors, namely the friction between the workpiece and die and the elastic properties of the die, were
examined. The solution shows that a no-springback stamping process can be achieved by a comprehensive selection of processing
parameters.

Nomenclature
c half length of the contact zone between the punch and

sheet, Fig. 3(a)
c' half length of the contact zone between the sheet and die,

Fig. 3(a)
C t , C2 constants to be determined by boundary conditions, see

Eqs. (7) and (8)
E Young's modulus
m dimensionless bending moment, defined by Eq. (4)
n dimensionless shear force, defined by Eq. (4)
q contact stress
R radius of punch

dimensionless membrane force, defined by Eq. (4)
w deflection of the sheet (in y-direction), Fig. 3(a)
w' deflection of the cantilever beam (vertical to z-axis), Fig.

3(c)
x, y global Cartesian coordinates, defined by Eq. (4), see also

Fig.3(a)
z local axial coordinate attached to the cantilever beam

with its origin at end A, Fig. 3(c)
e polar coordinate variable, Fig. 3(a)
~ springback ratio, defined by Eq. (14)
<p included angle of the tangent of the deformed sheet

surface at e with the positive direction of x-axis, Fig.
3(a)

\jI dimensionless curvature, defined by Eq. (4)

Subscript
d die
e elastic
n normal direction
p punch
t tangential direction
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1. Introduction
Because of the practical 'importance of sheet metal stamping

using deformable forming tools [I], theoretical and experimental
studies on sheet deformation have been carried out extensively [1
4]. However, owing to the complexity of the deformation
mechanisms involved, investigations into the stamping processes
with deformable tools are difficult. Consequently, there are two
ways that have been used to gain a deeper understanding of the
stamping processes. One is to develop reliable methods and
models to reveal the qualitative behaviour, and the other is to
carry out parametric studies to generate quantitative guidelines for
the design of practical operations.

This paper aims to develop an analytical approach to study the
springback of sheet metals stamped by a rigid punch and an
elastic die. Based on this, the dependence of springback on the
main stamping parameters are discussed in detail.

2. Modelling
Consider an elastic/perfectly plastic metal sheet (thickness h,

yield stress cry, Young's modulus E) on an elastic die (Young's
modulus Ed) stamped by a rigid punch of circular cylinder of
radius R, see Fig. 1. The stamping is a three-body contact
problem but is under plane-stress deformation. Because of the
large friction between the surfaces of the sheet and die, the large
deflection theory of thin strip bending must be employed.

Assume that a plane section of the sheet remains plane
throughout the stamping process. Then strain across the plate
thickness is always linear. Correspondingly, there are three
possible stress states at any cross-section of the sheet, i.e., pure
elastic (S I), single-side plastic (S2) and double-side plastic (S3),
depending on the different combinations of the bending moment
M and membrane force T at that cross-section, see Fig. 2.
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the sheet, and therefore will be ignored in the following analysis.
To simplify the calculation of the contact stresses, we assume

that the normal reaction of the elastic die follows Winkler's
hypotheses, and that the tangential contact stress between the
sheet and die is proportional to the normal stress, Le. q'd =pqnd'
where 11 is the friction coefficient.

In the next section, we will first obtain the analytical solutions
to parts A' A and AC, and then calculate stresses using a

Elastic die numerical scheme in conjunction with the compatibility conditions
of deformation between the two parts.

Fig. 1. The schematic of stamping with an elastic die

transition part

Fig. 2. Possible stress states in the sheet workpiece

The deformation of the sheet is symmetrical to its central
section (Fig. I). Thus only half of the sheet needs to be studied.
The contact zones and interface stresses between the punch and
sheet and between the sheet and die are unknown in advance,
which are functions of the punch stroke in the stamping process.
In order to analyse the problem properly, similar to the analysis
of stamping a sheet elastically into an elastic foundation [5], we
can divide the sheet into three parts according to its contact with
the punch and die (Fig. 3(a)): (I) the central part A' A, where the
sheet is in perfect contact with both the punch and die surfaces,
(2) the transition part AC, where the strip is in perfect contact
with the die but has no contact with the punch, and (3) the free
part CD, where no contact takes place with either the punch or
die.

The curvature of the central part is a known function which
is identical to that of the punch surface, i.e., the curvature of the
circle with radius R. The contact stresses on the sheet of this part
are the normal and tangential contact stresses between the sheet
and punch, q"P and q,P' and the normal and tangential ones
between the sheet and elastic die, q"d and q'd' Usually, q,P is
much smaller than q'd' Thus, for simplicity, we will ignore q,P in
our analysis, see Fig. 3(b).

The transition part can be modelled as a cantilever beam
subjected to both normal and tangential stresses, q"d and q'd' due
to the interaction between the sheet and die, see Fig. 3(c). The
end A of this part is the contact-off point between the punch and
sheet, and end C is the contact-off point between the sheet and
elastic die. The boundary conditions of the beam must guarantee
the continuity of stresses and deformation across the two ends.
This requires that the bending moment, membrane and shear
forces are zero at C, and that the deflection and its slope, bending
moment and membrane force are equal to those of the central part
at A.

The free part of the sheet, CD, does not deform during
stamping. Its displacement relies on the deflection and deflection
slope at end C. This part has no contribution to the springback of

(b)

z
e---
D

(c)

Fig. 3. The mechanics modelling

3. Solution
3.1. Basic equations

Based on the above mechanics analysis and the theory of thin
strip with large deflection, the equilibrium, geometric, and
compatibility equations can be written in the following forms:

(1)
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dx dy d<p _
dS = cos<p, dS = sin<p, di - 11 3 1j1,

1
w(S~) = w(S;), <p(S~) = <p(S;),

m(S~) = m(S;), t(S~) = t(S;),

(2)

(3)

(7b, c)

(c) When I + t - 2r :::; m :::; 1.5 (l - r), the stress state is
double-side plastic, which leads to

where

(5)

The detailed derivation of the above solutions can be found in the
appendix of this paper.

(9)

(10)
L'

Wi = f sin<p d~,
z cos<p

With the internal forces m and t determined above, the contact
stress qllP can be obtained by

3.3. Solution to Part AC
The deflection of part AC can be expressed as

in which Me =a yhz/6 is the maximum elastic bending moment,

Ne = ayh the maximum elastic shear force, Te = ayh the
maximum elastic membrane force, Q the contact stress, W the
deflection of the sheet, K the curvature of the sheet, and Ke =

2a/hE, is the maximum elastic curvature of the sheet. Other
notations can be found in the list of nomenclature. According to
the deformation assumption of the die material and the
geometrical relations shown in Fig. 3, the contact stresses
between the sheet and die can be expressed in terms of the
deflection of the sheet, WI' at the contact-off section A, that is,

1
qlld = 11 z(W I - cosS,+ cosS),
q,d = 1.l11 2 (W I - cosS, + cosS),

where 112 = Ed /(2a y) is a non-dimensional constant.

where L' is the length of part AC. To calculate w' using Eq. (l0),
it is necessary to find the relationship between the axial
coordinate z and the slope of the deformed plate surface, that is,

3.2. Solution to the central part
In the central part A' A, the curvature of the sheet is known,

because the sheet is in complete contact with the punch. Thus the
solution to the above basic equations can be obtained as follows:

(a) When 0 :::; m :::; I - t, the stress state is pure elastic,

d<p
dZ

L'

sin<p = 11 3 f 1j1 d~. (II)

(6)

where to = t 19=0 and WI = W 19=91'

(b) When I - t :::; m :::; I + t - 2r, the stress state is single-side
plastic. This gives rise to where

m, O:::;m:::;l-t

(12)

(7a) m =11~112(LI)2[[[W{I -i J-WICOSSI]dSd~,

t =11 111 2e [[WI (I -iJ-W
I

COSS I] dS·

(13)



52 L.e. Zhang, Z. Lin / Journal ofMaterials Processing Technology 63 (1997) 49-54

Equations (10) to (13) are the relations for calculating the
deflection of part AC. Because of the strong non-linearity, they
must be solved by an iteration scheme.

3.4. Springback
Assume that the unloading process is pure elastic. Then, the

springback ratio ~ of the sheet at any section is given by [4]

m(i),

\If(i) = h[1 - t (i)] - m (i)r'
{ 3[ 1_ (t (i))2] _ 2m (i)} -1/2

O:O::m:O::I-t,

1 - t :0:: m :0:: 1 + t - 2t 2

(14)

where

when the punch is removed. ~ varies between 0 and 1, with ~

= 1 indicating no-springback and ~ = 0 a full springback
corresponding to a pure elastic stamping. Hence, a larger ~

represents a smaller springback and vice versa. With m and \If
determined by solutions (6) to (13), ~ can be obtained easily.

II \

m (i) = 11i112(e(i)? JJq~? dt,d~, t(i) = 11 111 2eli) J qt~) dt,.
zi;

3.5. Iteration technique
Quantities WI and to in the solutions of parts A' A and AC

must be determined by the deformation compatibility between the
two parts specified by Eq. (3). For convenience, the iteration can
start with ignoring the deformation of part AC. The procedure is
as follows.

(i) Give contact-off angle 91,
(ii) Calculate the internal force of parts A' A and AC ignoring

the deformation of part AC and determine w/O
), to(O) by

compatibility conditions.
(iii) Calculate the deflection of part AC, using

An internal iteration must be conducted inside this step until all
the compatibility conditions are satisfied.

(vii) Check the convergence criterion

If it is satisfied, do the next stop; otherwise, return to step (iv),

where E is a small positive number.
(iix) Calculate the springback ratio by Eq. (14).

(vi) Calculate the deflection of part AC by

I I

(w IYO) =L Jtan<p(O) d~, sin<p(O) =L 11 1112 J0/(0) dt"

1
q,,~l = 11 2wi'\1 - -r) -(w 1)(i-I)112sin91'

ql~) = q,~)/l. O:O::z:O::LI(i)

4. Numerical examples
Figure 4 shows the variation of the springback ratio with the

change of the contact angle 9t when geometrical and material
parameters are given. The increase of 91 raises the springback
ratio. This is because a larger 91 indicates a greater depth of
indentation and thus more significant plastic deformation.

When 91 is small, say less than 18°, the bending moment in
the central part of the sheet is uniform (Fig. 5(a», indicating a
pure bending in this part. However, when 91 reaches to a certain
value, 67.5" for instance, the bending moment is no longer
uniform (Fig. 5(b», because membrane force t increases
considerably (Fig. 5(c». It is evident that t plays an important
role in the variation of ~. It is interesting to note that the
variation tendency of ~ is very similar to that of t.

The friction between the sheet and die affects greatly the
behaviour of ~, see Fig. 6. It is obvious that a die possessing a
larger coefficient of friction is desirable in terms of a higher
springback ratio. We can see clearly that when /l is beyond 0.150,
most part of the sheet will not have springback because of ~ =
1. An interpretation of the above effect is that the friction
increases the membrane force. In addition, a larger friction helps
to prevent from relative sliding between the sheet and die surfaces
and thus avoid scratching the workpiece surface.

Increasing the value of 112' while keeping cry a constant,
means to increase the elastic modulus of the die. Figure 7
demonstrates the effect of the elastic modulus of die on the
springback ratio. Similar to the friction effect, the use of a die
with a sufficiently larger elastic modulus will also raise ~ to one
and therefore give rise to a no-springback stamping. However,

I-t:O::m:O:: I+t-2t 2

0:0:: m :0:: 1 -t,

\

sin<p(i) = L I(i)11111
2
J\If(,ldt"
z

m(O) ,

4(1 -t(lIlY

I

(w I)(i) = L I(i) Jtan<p(i)d~,

where L = L'(O) is the initial length of part AC.
(iv) Revise w\(i), to(i) and the contact stresses of parts A' A and

AC.
(v) Determine instant contact-off point C where q"e (i) = 0, and

then determine L,(i) by
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Fig. 6. Effect of friction on the springback ratio (9, = 90°, 11, =50, h =
1.0, E/Ed =2000, E/cry = 1000, cry =210 MPa)
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this will, at the same time, increase the total stamping load that
is generally not favourable in practical operations. Thus the
selection of the die material should be based on a comprehensive
consideration of both Ed and J.I.

0.8410':-----:'0.-=-2--0~.4.,..-------::0'-:.6--0.,...::-8 -~--J1.2

x/c

Fig. 4. Variation of springback ratio (J.I = 0.05, 11, = 50, h = 1.0, E/Ed =
2000, E/cr y =1000, cry = 210 MPa)
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5. Conclusions
(1) An analytical solution to the springback of sheet metals

stamped by a rigid punch and an elastic die has been generated.
The method developed can be extended to more complex
stamping problems.

(2) A no-springback stamping process, which is favourable in
manufacturing practice, can be obtained when using elastic dies.
An optimal selection of a die material should be based on a
comprehensive consideration of both the coefficient of friction
and the elastic modulus of the die.
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2000, E/cr y = 1000, cry = 210 MPa)
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where

dt
"{[8

[y'l=t +I'i/ (211 1 - !)r
- 211 ~ I'i/ dq,

[y'l=t + 1'i/(211 1 - I)] de

211 ~ q,J\i/ dt

[y'l=t +I'i/(211 1 - 1) ]\I1-=t de

Appendix: Some details of solution to part A'A
(i) In the single-side plastic state,

Clearly, m and n vary even '" is a constant. The solution is
therefore

(ii) When the stress state is double-side plastic, we have

This gives rise to

411 l t - t2 = C2 -411711 2 J.l[(w l -cos(1)e +sin8J,
t d tn = - __,

211 1 de

d n 1 [ d
2

t
"{[8 = - 211

1
t d e2

d t - 2117q,

"{[8 211
1

- t '

d 2 t - 2117 d q, 2117 q, d t
+..,....--....,..".

de2 (211 1 - t) de (211
1

- t)2 "{[8'


