
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

A new method of fictitious viscous damping determination for the dynamic relax-
ation method

M. Rezaiee-pajand a, M. Kadkhodayan b,⇑, J. Alamatian c, L.C. Zhang d

a Department of Civil Engineering, The Ferdowsi University of Mashhad, Mashhad, Iran
b Department of Mechanical Engineering, The Ferdowsi University of Mashhad, Mashhad, Iran
c Department of Civil Engineering, The Islamic Azad University, Mashhad Branch, Mashhad, Iran
d School of Mechanical and Manufacturing Engineering, The University of New South Wales NSW 2052, Australia

a r t i c l e i n f o

Article history:
Received 25 June 2009
Accepted 1 February 2011
Available online 1 March 2011

Keywords:
Dynamic relaxation
Fictitious viscous damping
Lowest eigenvalue
Nonlinear analysis

a b s t r a c t

This paper develops a new method for calculating the viscous fictitious damping of the dynamic relaxa-
tion (DR) method to overcome one of the most crucial difficulties in its application – the low convergence
rate. The DR formulation was derived by error minimizations between two successive iterations to
deduce an optimum fictitious mass and viscous damping with the aid of the Stodola iterative process.
The efficiency of the new method was verified by its application to a wide range of typical structures with
strong nonlinearity. The results show that compared to the conventional DR algorithm such as kinetic
approach, the new method improves the convergence rate considerably.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A structural analysis often needs the solution to a set of
equations,

½S�fDg ¼ ffg ¼ fPg ð1Þ

using a numerical method, such as the finite element method or the
finite difference method, where [S] is the structural stiffness matrix,
and {D}, {f} and {P} are displacement, internal force and external
load vectors, respectively. When a geometrical, material or contact
nonlinearity in involved, the internal force vector will be a
nonlinear function of the displacement. The most commonly used
methods for solving Eq. (1) in nonlinear analysis are iterative tech-
niques, either implicit or explicit [1]. An explicit method uses resid-
ual force so that calculations can be performed by a vector
operation which is simple and highly efficient for nonlinear prob-
lems. An implicit method, on the other hand, is formulated based
on residual force derivatives (stiffness matrix) and requires a matrix
operation, which make them more complex and time consuming.
For example, at a snap-through or a snap-back point of a structure,
when the stiffness matrix becomes zero or undefined, the implicit
method will encounter difficulties although its convergence rate is
generally greater than that of the explicit.

The dynamic relaxation (DR) method [2,3] is an explicit itera-
tive technique which converts a static system to an artificially dy-

namic one by adding fictitious inertia and damping forces. When
the artificial dynamic motion diminishes, i.e., when the system re-
turns to its static state, a solution to the original static problem is
obtained. In so doing, Eq. (1) becomes

½M�nf€Dgn þ ½C�nf _Dgn þ ½S�nfDgn ¼ ffgn ¼ fPgn
; ð2Þ

where [M]n and [C]n are fictitious mass and damping matrices in the
nth iteration of the DR algorithm, respectively, which are always
diagonal for the sake of simplicity. The super dots denote the deriv-
atives related to the fictitious time. Mathematically, the DR formu-
lation is based on the second order Richardson rule [4]. Physically,
DR scheme can be illustrated by the steady state response of an arti-
ficially dynamic system [5,6].

Rushton [7] applied DR to nonlinear systems. Brew and Brotton
formulated the DR method using the first order dynamic equilib-
rium relationship and studied the stability conditions of frame
structures [8]. Wood defined fictitious mass using the upper bound
of spectral radius of the coefficient matrix [9] and showed that by
doing so the convergence rate of DR became higher than the semi-
iterative procedures in linear analysis. Bunce [10] conducted an
estimation of critical damping. Alwar et al. determined the steady
state response from an exponential function [11]. Cassell and
Hobbs utilized Gerschgörin circle theory for fictitious mass values
and applied this method for nonlinear problems [12]. Also kinetic
damping theory was proposed by Cundall [13].

Frieze et al. [14] used a DR algorithm for nonlinear analysis of
plates. Papadrakakis [15] carried out an error analysis and sug-
gested an automatic procedure for the selection of DR parameters.
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Another explicit formulation was performed by Underwood [16].
An implicit DR relationship was introduced by Felippa [17]. Zie-
nkiewicz and Lohner suggested an accelerated procedure for
improvement of the convergence rate [18]. Barnes used DR method
for form-finding of prestressed nets and membranes structures
[19]. By using weighting factors for mass and damping, Al-Shawi
and Mardirosian utilized DR in the finite element analysis of
plate bending [20]. Qiang determined fictitious time and damping
by Rayleigh’s principle [21]. A modified adaptive DR method, the
maDR algorithm, was proposed by Zhang and Yu in which the
estimation of steady state response was modified to be instant
[22].

Other researchers such as Turvey et al. [23] and Bardet et al.
[24] studied some applications of DR method. Ramesh and Krish-
namoorthy [25,26] applied the DR method to problems with
snap-through or snap-back. Kadkhodayan et al. [27–29] introduced
a new model for fictitious damping and analyzed elastic-plastic
plate bending and buckling. Also, Topping et al used Parallel Dy-
namic Relaxation technique for finite element analysis [30,31].
Nonlinear analysis of buckling propagation in pipe lines [32], shape
finding [33,34] and grid shells, spline beams and membrane anal-
ysis [35,36] are other applications of the DR method. In addition,
the DR has been combined with neural networks to increase model
accuracy of tensegrity structures [37] and has been successfully
applied to linear and nonlinear analysis of composite structures
[38]. Moreover, Topping and Ivanyi in a recent book have concen-
trated on the computational aspects of analysis and design of cable
membrane structures using the dynamic relaxation method with a
finite element idealization [39]. This book provides a comprehen-
sive view to the DR procedure and its parameters for structural fi-
nite element analysis. Modifications of fictitious time steps have
been formulated based on the minimization of residual forces in
DR iterations [40]. Recently, the method has also been used in non-
linear dynamic analysis of structures [41].

In the explicit DR method, fundamental relationships are con-
structed by using the central finite difference formulation as fol-
lows [22]:

_D
nþ1

2
i ¼ 2mii � tncii

2mii þ tncii

_D
n�1

2
i þ 2tn

2mii þ tncii
rn

i i ¼ 1;2; . . . ; q; ð3Þ

Dnþ1
i ¼ Dn

i þ tnþ1 _D
nþ1

2
i i ¼ 1;2; . . . ; q; ð4Þ

where tn, mii and cii are fictitious time step, ith diagonal element of
fictitious mass and damping matrices in the nth iteration of DR,
respectively. Notation q denotes the number of degrees of freedom
and rn

i is the residual force of the ith degree of freedom, i.e., {R}n in
the nth iteration:

fRgn ¼ ½M�nf€Dgn þ ½C�nf _Dgn ¼ fPgn � ffgn
: ð5Þ

DR iterations are unstable because numerical time integration is
used to integrate the differential equations of motion. Hence, ficti-
tious parameters such as time step and diagonal mass and damping
matrices are determined so that the stability conditions are satis-
fied. However, the slow convergence rate of the DR method has al-
ways been a critical issue.

This paper will introduce a new approach to determine the fic-
titious damping in the dynamic relaxation method based on the
Stodola iterative process together with an instant adaptive crite-
rion. It should be emphasized that two general types of damping
can be utilized in DR process: Kinetic damping and Viscous damping.

Many parameters have to be set in order to obtain an efficient
solution for any structural problem. However, the number of
parameters may be reduced by using kinetic damping which does
not require the determination of a viscous damping term, so that
only the time step and the fictitious nodal masses are required.
In this way, the time interval may be fixed [39]. Hence, the kinetic

damping provides an alternative approach for DR method. This
procedure has been proposed by Cundall [13] for application to
unstable rock mechanism. The high stability and rapid conver-
gence rate for structures with large displacement are the main
specification of the kinetic damping method. In such analyses,
the undamped motion of a structure is traced until local peak in to-
tal kinetic energy is detected. Then all current velocities are reset
to zero and DR process is restarted with current geometry and re-
peated through further peaks (generally decreasing) until the en-
ergy of all modes of vibration have been dissipated (static
equilibrium) [30]. The method of kinetic damping has been found
to be very stable and rapidly convergent when dealing with large
displacements [39]. The stability of this method depends on the
time–mass relation [36]. One of the important applications of ki-
netic damping DR algorithm is parallel finite element analysis
[30,31,39]. For example, the Dynamic Relaxation method can be
used based upon geometric parallelism [30]. The parallel DR
scheme is undertaken in two stages. First, the overall mesh is di-
vided into different number of sub domains corresponding to the
number of available processors. Then, DR process (usually DR with
kinetic damping algorithm) is used over the sub domains and con-
verged results from each sub domain are received and compiled to
obtain the overall results for the domain.

On the other hand, the viscous damping which has been used in
several common DR algorithms such as Papadrakakis [15], Under-
wood [16], and etc., is closer to real dynamic exercise. The DR for-
mulation which is described in this paper is based on viscous
damping.

This paper focuses on viscous damping and presents a new ap-
proach to calculate this factor so that DR convergence rate of pro-
posed technique is higher than the common existing methods. The
merits of the new method will be verified by a comparison with
the nonlinear finite element solutions to some typical structures.
Moreover, the proposed viscous DR method will be compared with
the common kinetic DR algorithm.

2. Error analysis of the viscous dynamic relaxation method

In this section, the viscous damping for DR method is consid-
ered. The most common way to study the stability and conver-
gence rate of a viscous DR algorithm is an error analysis between
two successive iterations. Substituting Eq. (3) into Eq. (4) and using

the previous velocity _D
n�1

2
i

� �
as a function of displacement leads to

the following relationship:

2þ tncii

mii

� �
Dnþ1

i ¼ 2þ tncii

mii

� �
Dn

i þ
tnþ1

tn 2� tncii

mii

� �
ðDn

i � Dn�1
i Þ

þ 2tnþ1tn

mii
ðpi � f n

i Þ i ¼ 1;2; . . . ; q ð6Þ

The differential form of the fundamental DR equation, Eq. (6), is as
follows:

2þ tncii

mii

� �
dDnþ1

i ¼ 2þ tncii

mii

� �
dDn

i þ
tnþ1

tn 2� tncii

mii

� �
ðdDn

i � dDn�1
i Þ

þ 2tnþ1tn

mii
drn

i i ¼ 1;2; . . . ; q ð7Þ

where dDn
i is the increment of displacement of the ith degree of

freedom in the nth DR iteration. If the external load is assumed to
be constant during successive iterations, i.e., when dpi = 0, the incre-
ment of the residual force, drn

i , can be formulated based on the
chain derivative rule:

drn
i ¼ �df n

i ¼ �
Xq

j¼1

@f n
i

@Dn
j

dDn
j ¼ �

Xq

j¼1

sn
ijdDn

j ; ð8Þ
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The tangent stiffness matrix ([S]) can be calculated analytically or
numerically. The error factor ki (i = 1, 2 , . . . , q) is defined as

dDnþ1
i ¼ kidDn

i ; dDn�1
i ¼ 1

ki
dDn

i i ¼ 1;2; . . . ; q: ð9Þ

If the fictitious time step is assumed to be constant between two
iterations (tn = tn+1), substituting Eq. (9) into Eq. (7) gives

2þ tncii

mii

� �
k2

i � 2½2� ðtnÞ2ki�ki þ 2� tncii

mii
¼ 0 i ¼ 1;2; . . . ; q;

ð10Þ

where ki is the ith eigenvalue of matrix [M]�1 [s] defined by the fol-
lowing eigenvalue problem:

½M��1½S�fdDg � k½I�fdDg ¼ f0g ! ½S�fdDg � k½M�fdDg ¼ f0g; ð11Þ

where [I] is a unit matrix. It is clear that ki is the square of the nat-
ural frequency of the artificial dynamic system constructed by the
following equation:

j½S� � k½M�j ¼ 0: ð12Þ

On the other hand, the error factor can be calculated from Eq. (10),
i.e.,

ki ¼
2� ðtnÞ2ki �

ffiffiffiffiffi
D0i

q
2þ tncii=mii

i ¼ 1;2; . . . ; q: ð13Þ

where

D0i ¼ ðtncii=miiÞ2 þ ðtnÞ4k2
i � 4ðtnÞ2ki i ¼ 1;2; . . . ; q: ð14Þ

The DR stability and convergence rate conditions are satisfied if the
error factor, which is a function of two quantities, tncii

mii
and ki, is min-

imized. Fig. 1a shows the variation of the error factor for k = 1.0. It is
clear that the error factor is minimized when Eq. (10) has two equal
roots for ki. Fig. 1b demonstrates that it is also true for other eigen-
values. Therefore, the necessary condition for the maximum conver-

gence rate is obtained when the discriminant of Eq. (10) (D0i) is equal
to zero;

D0i ¼ 0! ðtncii=miiÞ2 þ ðtnÞ4k2
i � 4ðtnÞ2ki ¼ 0 i ¼ 1;2; . . . ; q:

ð15Þ

Fig. 1b shows the acceptable domains for fictitious parameters
(mass, damping and time step). In order to guarantee the maximum
stability, it is necessary that the absolute value of the error factor is
less than unity. Hence, tncii

mii
should be selected in the following

domain:

0 <
tncii

mii
6 2: ð16Þ

On the other hand, Eq. (15), which is an important condition for cal-
culating DR parameters, can be transformed to a second order equa-
tion as

ðtnÞ4k2
i � 4ðtnÞ2ki þ ðtncii=miiÞ2 ¼ 0 i ¼ 1;2; . . . ; q: ð17Þ

Therefore, the upper and lower bounds of the ith eigenvalue are ob-
tained as

kU
i ¼

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� ðtncii=miiÞ2

q
ðtnÞ2

i ¼ 1;2; . . . ; q: ð18Þ

kL
i ¼

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� ðtncii=miiÞ2

q
ðtnÞ2

i ¼ 1;2; . . . ; q: ð19Þ

Then, the acceptable domain for the upper and lower bounds of
each eigenvalue can be calculated by the combination of Eq. (16)
with Eqs. (18) and (19), i.e.,

2

ðtnÞ2
6 kU

i <
4

ðtnÞ2
i ¼ 1;2; . . . ; q: ð20Þ

0 < kL
i 6

2

ðtnÞ2
i ¼ 1;2; . . . ; q: ð21Þ

Moreover, the eigenvalues of matrix [M]�1 can be estimated by the
Gerschgörin’s circle theory as [42]

ki �
sii

mii

����
���� 6 1

mii

Xq

j¼1
j–i

jSijj i ¼ 1;2; . . . ; q; ð22Þ

Hence, each eigenvalue can be laid in two discrete regions, (I) and
(II), which are obtained by the sign determination of Eq. (22), i.e.,

ki 2 I) 1
mii

sii 6 ki 6
1

mii

Xq

j¼1

jsijj i ¼ 1;2; . . . ; q: ð23Þ

ki 2 II) 1
mii

sii �
Xq

j¼1
j–i

jsijj

2
664

3
775 6 ki 6

1
mii

sii i ¼ 1;2; . . . ; q: ð24Þ

Although both the zones are correct, it can be proved that Zone (I) is
more suitable for structural analysis (see Appendix). Because the
boundary identified by Zone (I) (Eq. (21)) should satisfy Conditions
(20) and (21), the following relationships can be obtained:

2

ðtnÞ2
6 kU

i <
4

ðtnÞ2
! ðt

nÞ2

4

Xq

j¼1

jsijj < mii 6
ðtnÞ2

2

Xq

j¼1

jsijj

i ¼ 1;2; . . . ; q; ð25Þ

0 < kL
i 6

2

ðtnÞ2
! ðt

nÞ2

2
sii 6 mii <1 i ¼ 1;2; . . . ; q: ð26Þ

One of the important criteria to assess the DR convergence is the
residual force, the sum of the inertia and damping forces. By choos-Fig. 1. Variation of the error factor.
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ing the minimum acceptable value for fictitious mass, inertia force
and consequently the residual force reduction, the lower boundary
of the mass region (in Eqs. (25) and (26)) is selected for the fictitious
mass:

mii ¼
ðtnÞ2

4
max 2sii;

Xq

j¼1

jsijj
" #

i ¼ 1;2; . . . ; q ð27Þ

To start the viscous DR iterations, the fictitious damping should be
determined. The damping factor that causes the structure to ap-
proach the static position most rapidly should be used for the anal-
ysis. This factor is called the critical damping factor. The critical
damping factor may be estimated by undertaking an undamped
run to obtain an estimate of the highest frequency and by using
the expression derived for the critical damping factor for a one de-
gree of freedom problem. The undamped trail analysis is sometimes
referred to as the ‘‘trail run’’ [39]. Unlike the commonly used ficti-
tious damping calculation method [27], i.e.,

cii ¼ 2miixmin ¼ 2mii

ffiffiffiffiffiffiffiffiffi
kmin

p
i ¼ 1;2; . . . ; q; ð28Þ

where xmin is the lowest natural frequency of a structure in free
vibration, in our present formulation, the fictitious damping can
be determined by Eq. (15), leading to

cii ¼ mii

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ki � ðtnÞ2k2

i

q
i ¼ 1;2; . . . ; q: ð29Þ

Based on the structural dynamics theory, the effect of higher defor-
mation modes is much less than the lower ones. In other words, one
can neglect the higher frequencies without a considerable error but
with a much enhanced computation efficiency. Hence, the lowest
natural frequency can be used for damping calculations in Eq.
(29), which gives rise to

cii ¼ mii

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kmin � ðtnÞ2k2

min

q
i ¼ 1;2; . . . ; q: ð30Þ

When the lowest natural frequency approaches zero, Eq. (30) re-
duces to Eq. (28). Hence, the commonly used method of fictitious
damping determination is a special, approximate case of our new
method.

3. The lowest natural frequency by Stodola method

An important point that still remains up to this point is to find
an accurate and simple technique to calculate the lowest natural
frequency, because this has a great effect on the viscous DR conver-
gence rate. The majority of the previous investigations used the
Rayleigh principle, which, when applied to a structure as a whole,
the lowest natural frequency is determined by [27]

x2
min ¼ kmin �

ðfDgnÞTffgn

ðfDgnÞT ½M�nfDgn : ð31Þ

If it is applied to a single joint, the lowest natural frequency can be
calculated on each node, separately, as [29]

ðxi
minÞ

2 ¼ ki
min �

ðfDignÞTff ign

ðfDignÞT ½Mi�nfDign i ¼ 1;2; . . . ;h; ð32Þ

where xi
min, {Di}n, {fi}n and [Mi]n are the lowest frequency, displace-

ment, internal force vector and fictitious mass matrices of the ith
node, respectively, and h indicates the total number of nodes of
the structure. Another way is to apply the Rayleigh principle to each
degree of freedom. In this case, the ith eigenvalue of [M]�1 can be
calculated as

x2
i ¼ ki �

fi

miiDi
i ¼ 1;2; . . . ; q: ð33Þ

However, all methods based on the Rayleigh principle are approxi-
mate so that their accuracy is a concern. In the following, we pro-
pose a new method for calculating the lowest natural frequency
for DR iterations.

The Stodola iterative process can be used in the DR algorithm.
The steps to calculate the lowest natural frequency using the Sto-
dola iterative process are as follow [43,44]:

(a) Assume initial eigenvector for the lowest natural frequency
ðfX0g ¼ fIgÞ and set i = 0.

(b) Determine {Xi+1} by

fXiþ1g ¼ ½ST ��1½M�fXig: ð34Þ

(c) Normalize the eigenvector with respect to the largest ele-
ments of this vector, i.e.,

fXiþ1g ¼ fXiþ1g
maxðXiþ1Þ

: ð35Þ

(d) Check the convergence by comparing two successive
eigenvectors,

jðfXiþ1gÞTfXiþ1g � ðfXigÞTfXigj
ðfXiþ1gÞTfXiþ1g

6 tolerance: ð36Þ

(e) If the convergence criterion is not satisfied go back to (b);
otherwise obtain the lowest eigenvalue from the following
equation:

kmin ¼maxðXiþ1Þ: ð37Þ

The above Stodola iterative process requires the inverse of the stiff-
ness matrix in each of the DR iterations. For a smooth nonlinear
analysis, the lowest frequency can be considered a constant at each
load increment in DR iterations – a constant lowest frequency
(CLF) method – hence the calculation of the inverse stiffness matrix
is not a significant concern. If a structure is strongly nonlinear, the
lowest frequency should be updated frequently, which will reduce
the computational efficiency drastically. Here we propose an
approach to automatically update the lowest frequency to realize
a rapid convergence rate.

To achieve this, it is necessary to introduce a criterion for updat-
ing the lowest frequency when required. The variation of the resid-
ual force between successive iterations is a good quantity to use. If
the residual force does not vary considerably or remains constant
during three iterations, the DR convergence rate has become slow,
indicating that the lowest natural frequency should be updated. In
other words, when the absolute difference of the residual force ra-
tio between three successive iterations (n�2, n�1 and n) ap-
proaches zero (or less than a small allowable value en), i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPq
i¼1ðrn

i Þ
2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPq

i¼1ðrn�1
i Þ2

q �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPq
i¼1ðrn�1

i Þ2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPq

i¼1ðrn�2
i Þ2

q
�������

������� < en; ð38Þ

the convergence rate is slow. At this stage the lowest natural fre-
quency should be updated at the nth iteration. For convenience,
we call it an updated lowest frequency (ULF) method.

Using our ULF above, we can construct various viscous DR algo-
rithms, i.e., CDF, WRP, NRP and DRP as defined in Table 1, using dif-
ferent damping theories. In this paper, we will calculate the mass
matrix by Eq. (27). The fictitious time step is constant and equal
to unity for all algorithms. In the CDF and WRP algorithms, the
lowest natural frequency of a structure as a whole is calculated
from the Rayleigh principle, i.e., Eq. (31).
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4. The kinetic DR algorithm

The kinetic DR method proposed by Cundall [13] is an efficient
procedure to reduce the DR parameters. This algorithm does not
require the calculation of fictitious viscous damping, i.e., this pro-
cedure traces the undamped vibrations of structure to obtain the
static equilibrium position. Therefore, the fundamental iterative
relationships of kinetic DR method can be achieved when the vis-
cous damping factor in Eqs. (3) and (4), is equal to zero (cii = 0), i.e.;

_D
nþ1

2
i ¼ _D

n�1
2

i þ tn

mii
rn

i i ¼ 1;2; . . . ; q; ð39Þ

Dnþ1
i ¼ Dn

i þ tnþ1 _D
nþ1

2
i i ¼ 1;2; . . . ; q; ð40Þ

By running Eqs. (39) and (40) successively, the total kinetic energy
of undamped structure is traced during iterations. A position with
maximum kinetic energy would represent the static equilibrium
where the potential energy is a minimum. The kinetic DR algorithm
uses this idea to approach the static equilibrium position. In each
iteration, the total kinetic energy, Uk, is calculated by the following
equation:

Uk ¼
Xq

i¼1

mii
_D

nþ1
2

i

� �2
ð41Þ

DR iterations run successively, until a peak in the kinetic energy is
detected. At this stage, all current velocities are reset to zero. This
process should be continued through further peaks until the con-
vergence criterions are satisfied. To apply this algorithm, it is as-
sumed that the peak of kinetic energy has occurred between
times tn and tn+1, i.e., a fall in the total kinetic energy has taken place
at time tn+1. As described by Topping and Ivanyi [39], the displace-
ment of the peak of kinetic energy is calculated by the following
equation:

�Dn
i ¼ Dnþ1

i � 3
2

tnþ1 _D
nþ1

2
i þ ðt

nÞ2

2mii
rn

i i ¼ 1;2; . . . ; q; ð42Þ

where, �Dn
i i ¼ 1;2; . . . ; q is the displacement with maximized

kinetic energy. The analysis is restarted by taking the
�Dn

i i ¼ 1;2; . . . ; q as the initial displacements. To obtain a better
convergence, the velocities of the first time step should be calcu-
lated at the mid point as bellow:

_D
nþ1

2
i ¼ tn

2mii
rn

i i ¼ 1;2; . . . ; q; ð43Þ

where, rn
i is calculated from displacement’s components, presented

by Eq. (42). Now, the DR iterations are restarted from Eqs. (39) and
(40). The above process will be continued for other successive peaks
of kinetic energy until the convergence criteria are satisfied. This
algorithm is called KDR.

The diagonal elements of mass matrix which control the stabil-
ity of kinetic DR algorithm (KDR), have been formulated as follows
[39]:

mii P
ðtnÞ2

2

Xq

j¼1

jsijj i ¼ 1;2; . . . ; q ð44Þ

5. Numerical examples and discussion

The DR algorithms presented in Sections 3 and 4 dealing with
viscous and kinetic approaches, respectively, are utilized to analyze
some structures. Here two criterions are employed for better judg-
ment about the efficiency of different DR schemes i.e., number of
convergence DR iterations and variation of the structural displace-
ment during convergence DR iterations. By the first criterion the con-
vergence rate of algorithms are compared. The second criterion
shows that which model has more efficiency for structural analy-
sis. Moreover, a comparison between the viscous and kinetic DR
methods can be performed.

To investigate the capability of our new algorithms, CLF and
ULF, some typical elastic structures with geometrical nonlinearity
are analyzed by the finite element method. For this purpose, some
programs have been written by the authors in Fortran Power Sta-
tion software. The results’ validity and accuracy of these programs
have been checked and controlled by several benchmark problems
which have been achieved from the published papers. Wide range
of such numerical examples proved the accuracy and validity of the
proposed programs. Because of paper limitation, we cannot pres-
ent all numerical results. Here, some of the important ones are con-
sidered. The truss-spring system to be discussed is a nonlinear
single degree of freedom system with both softening and harden-
ing behaviors. This kind of structure has been used as a benchmark
problem for examining the efficiency and capacity of an algorithm.
The toggle and portal frames are skeletal structures with two types
of degrees of freedom (transformation and rotation). They have
high softening nonlinearity and can be used to verify the capability
of the proposed methods for strongly nonlinear structures. The
space truss has many degrees of freedom and can be used to exam-
ine the capability of the proposed methods for large structures
with high degrees of freedom. The circular plate, spherical cap
and cone shell are continuous structures with hardening and/or
softening behavior. In all the calculations, en in Criterion (38) is ta-
ken as 0.005.

5.1. Truss spring system

The truss-spring system illustrated in Fig. 2 is a nonlinear one
degree of freedom structure, composed of a spring of stiffness

Table 1
The damping specifications of viscous dynamic relaxation algorithms.

Algorithm name Description Damping relation Eigenvalue calculations

CDF Common damping factor Eq. (28) Rayleigh principle, Eq. (31)
WRP Rayleigh principle for whole system Eq. (30) Rayleigh principle, Eq. (31)
NRP Rayleigh principle for each node Eq. (30) Rayleigh principle, Eq. (32)
DRP Rayleigh principle for each degree of freedom Eq. (30) Rayleigh principle, Eq. (33)
CLF Constant lowest frequency Eq. (30) Stodola process in first iteration
ULF Updated lowest frequency Eq. (30) Stodola process when condition (38) is satisfied

Fig. 2. A truss-spring system.
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KS = 1051 N/m and a truss element of axial rigidity AE = 44 484 kN.
This element is made of steel with modulus of elasticity and cross
sectional area as 2.06 � 1011 N/m2 and 2.16 � 10�4 m2, respec-
tively. According to Ref. [16], its internal force, f, and tangent stiff-
ness, ST, can be described by

f ðDÞ ¼ 0:5AEðcos2 uÞ D
L0

� �2 D
L0

cos2 u� 3 sin u
� 	

þ ksDþ AE
D
L0

� �
sin2 u; ð45Þ

ST ¼ 1:5AEðcos2 uÞ D
L0

cos2 u� 2 sinu
� 	

D

L2
0

 !

þ ks þ
AE sin2 u

L0
: ð46Þ

In our calculation, the loading process was completed in twelve
increments with a constant load increment of 4.4484 N. Fig. 3
shows the load-deflection curve of this system. The number of iter-
ations for convergence shows that the proposed algorithms, CLF or
ULF, bring about a reduction of iterations of up to 60.7% and 75.4%
compared to the CDF and WRP, respectively (Table 2). In this exam-
ple, the kinetic DR method (KDR) does not show a good efficiency
and its number of iterations for convergence is more than that of
DR algorithms using viscous damping. Fig. 4 demonstrates the var-
iation of displacement vs. convergence iterations at the 6th load
increment when the nonlinearity of the structure emerges. It is
clear that in this case the damping factor from the CLF is close to
the critical damping such that a convergence to the steady state re-
sponse is quickly reached.

5.2. Toggle frame

Fig. 5 shows a two-member frame with fixed supports that has
been investigated both experimentally and analytically [45]. This
structure is made of wood with modulus of elasticity as
0.71 � 1011 N/m2. The total load (P), cross-sectional area and mo-
ment area of frame members are 155.605 N, 1.181 � 10�4 m2,
and 0.0375 � 10�8 m4, respectively. In the present study, this
structure was analyzed by five elements in each member. The

co-rotational finite element formulation [1] was used and the total
load was applied in ten equal increments. Fig. 6 displays the static
path of the vertical deflection of the upper node. The number of
iterations for convergence is listed in Table 3. In this example,
the convergence rate of KDR algorithm (kinetic DR) is higher than
viscous DR methods. However, the proposed ULF method could
overcome this defect somehow so that its total iterations (5236)
are close to the number of KDR’s iterations (5069). In the ULF
method, the lowest frequency was updated about every eleven
iterations, leading to the highest convergence rate (in category of
viscous DR method) of a maximum reduction of iterations of up

Fig. 3. The load-deflection curve of the truss-spring system.

Table 2
The number of iterations for convergence in analyzing the truss-spring system.

Method Number of iterations for each load increment Total Improvement (%)

1 2 3 4 5 6 7 8 9 10 11 12 CDF�CLF
CDF

WRP�CLF
WRP

CDF 17 17 19 21 26 45 17 11 6 8 9 11 207 60.7 75.4
WRP 5 6 8 11 19 61 7 9 11 12 13 13 175
CLF & ULF 3(1) 3(1) 3(1) 3(1) 4(1) 4(1) 6(1) 4(1) 4(1) 3(1) 3(1) 3(1) 43(10)
KDR 21 26 26 31 36 18 36 41 31 31 26 26 349

Fig. 4. Variation of displacement of the truss-spring system during the 6th load
increment.

Fig. 5. A toggle frame.

Fig. 6. The load-deflection curve of the toggle frame.
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to 24.9% compared to the DRP. It is clear that calculating the lowest
eigenvalue in the first iteration without further updating is not effi-

cient, when a structure has intense nonlinearity. The ULF and KDR
methods converge to the steady state at a semi-critical damping
model, see Fig. 7, while the CDF, WRP, NRP and DRP experience
over damped processes.

5.3. Portal frame

Each of the three members of the portal frame in Fig. 8 was
modeled by three frame elements [1]. This structure is made of
rubbery material with modulus of elasticity as 8274037.9 N/m2.
Also, the cross-section area and moment area of elements were ta-
ken as 12.9032�10�4 m2 and 27.74876171 � 10�8 m4, respec-
tively. The total load P of 0.44484 N was applied in ten equal
increments. Fig. 9 illustrates the load-deflection path of the hori-
zontal displacement at the top of the frame. The number of itera-
tions for convergence is shown in Table 4, which demonstrates
that the lowest frequency had been automatically updated in about
every eighty-four iterations by the algorithm Criterion (38). In this
example, the KDR algorithm has a wonderful efficiency compared
with viscous DR methods, so that the number of iteration is
approximately third of that for the ULF one.

In the viscous DR algorithms, the convergence rate of the DRP,
CLF and ULF are similar, but those of the CDF, WRP and NRP are

Table 3
The number of iterations for convergence in analyzing the toggle frame.

Method Number of iterations for each load increment Total Improvement(%)

1 2 3 4 5 6 7 8 9 10 DRP�ULF
DRP

CLF�ULF
CLF

CDF 500 500 500 500 500 500 500 500 532 3781 8313 24.9 28.1
WRP 500 500 500 500 500 500 500 500 532 3780 8312
NRP 500 500 500 500 500 500 500 500 500 2510 7010
DRP 500 500 500 500 500 500 500 500 500 2473 6973
CLF 500(1) 500(1) 500(1) 500(1) 500(1) 500(1) 500(1) 500(1) 500(1) 2785(1) 7285(10)
ULF 500(57) 500(38) 500(44) 500(71) 500(36) 500(62) 500(32) 500(30) 500(76) 736(29) 5236(475)
KDR 500 500 500 500 500 500 500 500 500 569 5069

Fig. 7. Variation of the tip displacement of the toggle frame during the 10th load
increment.

Fig. 8. A portal frame.

Fig. 9. The load-horizontal displacement curve of the portal frame.

Table 4
The number of iterations for convergence in analyzing the portal frame.

Method Number of iterations for each load increment Total Improvement (%)

1 2 3 4 5 6 7 8 9 10 WRP�ULF
WRP

CLF�ULF
CLF

CDF 500 13,740 8295 8441 8941 9653 10,559 11,687 13,105 14,946 99,867 76.2 7.4
WRP 500 13,733 8294 8440 8941 9653 10,559 11,687 13,105 14,946 99,858
NRP 500 11,199 6602 6775 7123 7613 8278 9036 10,028 11,269 78,423
DRP 2592 2189 1977 1931 2353 2008 2027 2341 2737 3312 23,467
CLF 1686(1) 1747(1) 1882(1) 2027(1) 2220(1) 2433(1) 2712(1) 3081(1) 3571(1) 4261(1) 25,620(10)
ULF 1686(13) 1746(12) 1811(10) 1953(17) 2107(28) 2314(28) 2585(31) 2771(41) 3169(43) 3573(57) 23,715(280)
KDR 720 755 782 810 834 901 937 962 1071 1210 8982
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very low. Again and in the category of viscous DR methods, the ULF
is the fastest, leading to a maximum reduction of iterations of up to
76.2% compared to the WRP. Fig. 10 shows that the ULF, CLF and

DRP methods converge to the steady state response at the critical
damping model, while the CDF, WRP, NRP undergo over damped
processes. In this figure, the KDR algorithm has the quickest con-
vergence rate.

5.4. Space truss

Fig. 11 illustrates a space truss which has been constructed
from steel with modulus of elasticity 2.06 � 1011 N/m2. The area

Fig. 10. Variation of the horizontal displacement of the portal frame during the
10th load increment.

Fig. 11. A space truss.

Fig. 12. The load-deflection curve at the tip of the space truss.

Table 5
The number of iterations for convergence in analyzing the space truss.

Method Number of iterations for each load increment Total Improvement (%)

1 2 3 4 5 6 7 8 9 10 WRP�ULF
WRP

DRP�ULF
DRP

CDF 237 231 231 232 233 235 238 244 264 562 2707 31.8 95.9
WRP 235 229 229 230 231 234 237 243 263 559 2690
NRP 2795 4901 6472 6799 7126 8560 7964 8574 10738 11,817 75,746
DRP 2387 2908 2835 3876 4023 4508 5736 6121 5585 7577 45,556
CLF 179(1) 180(1) 180(1) 180(1) 180(1) 182(1) 187(1) 183(1) 183(1) 198(1) 1832(1)
ULF 179(1) 180(1) 180(3) 180(2) 180(4) 182(5) 187(3) 183(1) 183(4) 198(3) 1832(27)
KDR 161 170 152 169 168 163 166 162 175 243 1729

Fig. 13. Variation of the tip displacement of the space truss during the 10th load
increment.

Fig. 14. A circular plate under a central concentrated load.

Fig. 15. The load-deflection curve of the circular plate.
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section of each member is 2.16 � 10�4 m2. All support conditions
are pined. This structure has 73 nodes, 168 elements and 147 de-
grees of freedom [46]. The total external load is 375 kN and the
nodes in altitude Z = 0 are restrained in all directions. An elastic
geometrical nonlinear analysis with Lagrangian finite element for-
mulation was performed for ten loading increments [1]. Fig. 12
shows the load-deflection curves of the tip node in Z-direction.
The number of iterations for convergence is listed in Table 5.
Although the convergence rate of KDR algorithm is higher than
that of the viscous DR methods; the proposed ULF and CLF meth-
ods could overcome this defect so that the difference between
the convergence rates of KDR and ULF (or CLF) algorithms is
approximately 5%. It should be noted that the convergence rate
of KDR method is lower than that of the ULF (or CLF) in 10th load
increment when there is an intense nonlinearity.

On the other hand, using the proposed method increases the
efficiency of viscous DR algorithm, so that the proposed CLF and
ULF methods converge faster than those using the Rayleigh princi-
ple. For example, the ULF method achieves a maximum reduction
up to 31.8% and 95.9% compared with the WRP and DRP, respec-
tively. Criterion (38) makes the lowest frequency updating happen
in about every sixty-seven iterations in the ULF method. Fig. 13
shows that the KDR, ULF and CLF methods converge to the steady
state response at a close-to-critical damping model, whereas the
CDF, WRP, NRP and DRP take over damped processes.

5.5. Circular plate

A clamped circular plate under a concentrated central load was
analyzed using five axisymmetric shell elements with geometrical
nonlinear behavior [47], Fig. 14. The material is steel with modulus
of elasticity 2.06 � 1011 N/m2 and Poisson’s ratio = 0.3. The total
concentrated load of 71.168 kN was applied in ten equal incre-
ments. The central vertical displacement vs. load is plotted in
Fig. 15. The number of required iterations for the convergence in
the algorithms is listed in Table 6. In this example, the efficiency
of the proposed viscous DR methods (ULF and CLF) is higher than
that of the kinetic DR scheme (KDR). Using ULF and CLF, a consid-
erable reduction about 25% and 20% has been occurred in the num-
ber of convergence iterations compared with the KDR, respectively.

Here, the ULF algorithm has the maximum convergence rate,
giving rise to a maximum reduction up to 52.3% and 8.7% com-
pared to the WRP and CLF methods, respectively. Clearly, Criterion
(38) is adequate in promoting the DR convergence rate. The calcu-
lation of the ULF method shows that the lowest frequency should
be updated in every fifty-seven iterations (Table 6). At the intense
nonlinearity of the structure as shown by the variation of the cen-
tral displacement vs. iterations at the 10th load increment in
Fig. 16, the ULF and CLF methods converge to the steady state with
close-to-critical damping, whereas all the other methods using the
Rayleigh principle experience over damping. Moreover, the KDR

Table 6
The number of iterations for convergence in analyzing the circular plate.

Method Number of iterations for each load increment Total Improvement (%)

1 2 3 4 5 6 7 8 9 10 WRP�ULF
WRP

CLF�ULF
CLF

CDF 955 830 776 738 709 685 664 646 631 617 7251 52.3 8.7
WRP 955 830 775 737 708 684 663 646 630 616 7244
NRP 712 779 777 828 852 818 782 814 739 772 7873
DRP 764 762 947 861 860 827 800 817 809 790 8237
CLF 758(1) 491(1) 402(1) 361(1) 338(1) 311(1) 294(1) 287(1) 271(1) 269(1) 3782(10)
ULF 530(7) 429(4) 379(5) 338(3) 326(7) 307(8) 292(2) 289(5) 285(8) 275(11) 3452(60)
KDR 677 530 487 493 520 503 297 331 418 434 4690

Fig. 16. Variation of the central displacement of the circular plate during the 10th
load increment.

Fig. 17. A spherical cap under a uniformly distributed load.

Fig. 18. The load-deflection curve of the spherical cap.
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method has some fluctuates when it converges to the static
equilibrium.

5.6. Spherical cap

Fig. 17 shows a clamped spherical cap under a uniformly dis-
tributed load [47]. The thickness of the axisymmetric shell is
1.27 cm. This structure has been constructed from steel with mod-
ulus of elasticity and Poisson’s ratio as 2.06 � 1011 N/m2 and 0.3,
respectively. Three axisymmetric shell elements with geometrical
nonlinear behavior were used in our analysis. Similarly, the loading
process was completed in ten equal increments to the total load of
8277300 N/m2. Fig. 18 demonstrates the apex load vs. displace-
ment, and Table 7 lists the number of required iterations for con-
vergence. In this example, the convergence rate of KDR algorithm
is higher than that of the viscous DR methods. However, the pro-
posed ULF method could reduce this defect so that the difference
between the convergence rates of KDR and ULF algorithms is about
15%.

On the other hand, using the proposed method increases the
efficiency of viscous DR algorithm. The proposed ULF algorithm
has the maximum convergence rate, which results in a maximum
reduction of up to 11.2% and 23.0% compared to the NRP and
CLF, respectively, when the lowest frequency in the ULF method
is updated once every ten iterations in average. Fig. 19 shows the
variations of the displacement vs. iterations at the 6th load incre-
ment when the structure has a more intense nonlinear behavior.
Although the KDR has the most rapidly convergence rate to the sta-
tic equilibrium, the ULF method approaches to the steady state
with a close-to-critical damping.

5.7. Cone shell

Fig. 20 shows the segment cross-section of a cone shell under a
circular ring load applied at its upper end [47]. The lower end of
the shell is fixed. Two axisymmetric shell elements were used in
our analysis. The material is steel which its modulus of elasticity
and Poisson’s ratio are 2.06�1011 N/m2 and 0.3, respectively. The
thickness of this axisymmetric shell is 0.508 cm. The total circular
ring load of 103.972 N/m was applied in ten equal increments.
Fig. 21 shows the load-deflection curve of the vertical displace-
ment at the top of the segment and Table 8 lists the number of
the required iterations for convergence for different algorithms.
Here, the efficiency of proposed ULF method is higher than that
of the kinetic DR scheme (KDR) so that using the ULF reduces the
number of iterations for convergence about 7% compared with
the KDR.

Moreover, the ULF method leads to a maximum reduction of
iterations of up to 17.8% and 14.4% compared to the WRP and
CLF, respectively, when the lowest frequency is updated once every
ten iterations in average. Fig. 22 shows that the ULF, KDR and CLF
methods converge to the steady state solution at a close-to-critical
damping, whereas all the other methods suffer from over damping.

Table 7
The number of iterations for convergence in analyzing the spherical cap.

Method Number of iterations for each load increment Total Improvement (%)

1 2 3 4 5 6 7 8 9 10 NRP�ULF
NRP

CLF�ULF
CLF

CDF 440 477 533 633 930 1146 659 546 488 448 6300 10.1 22.0
WRP 439 477 532 633 930 1146 659 545 487 448 6296
NRP 334 407 467 568 758 1513 682 478 450 379 6036
DRP 389 413 415 509 929 1693 725 574 421 388 6456
CLF 463(1) 501(1) 597(1) 800(1) 1590(1) 988(1) 704(1) 483(1) 439(1) 395(1) 6960(10)
ULF 455(2) 410(41) 467(68) 558(73) 844(244) 865(58) 550(5) 494(2) 388(7) 392(10) 5423(510)
KDR 448 349 330 468 633 652 492 437 412 335 4556

Fig. 19. Variation of the apex displacement of the spherical cap during the 6th load
increment.

Fig. 20. A cone shell under an end circular ring load.

Fig. 21. Variation of the tip displacement of the cone shell during the 10th load
increment.
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6. Conclusion

This paper has developed a new method for determining the
viscous fictitious damping for the dynamic relaxation method
using the Stodola iterative process together with an instant adap-
tive Criterion (38). A wide range of numerical examples have
shown that our new technique, either the constant lowest fre-
quency method (CLF) or the updated lowest frequency method
(ULF), can reduce the number of DR iterations significantly by
guaranteeing that the convergence happens always at a closer-
to-critical damping without imposing any additional calculations.
Moreover, comparison of the proposed algorithms with the kinetic
DR method shows that the new viscous damping can improve the
basic defect of the viscous DR procedures which is their low con-
vergence rates. In some examples, the ULF and CLF methods (pro-
posed formulation) have higher convergence rates compared with
the kinetic DR algorithm (KDR).

Appendix A

To select the suitable and compatible region for the eigenvalues
of matrix [M]�1[S], let us investigate the variation of the error fac-
tor vs. eigenvalue. As can be seen from Fig. 1b, when an eigenvalue
is close to zero, the error factor increases. It reaches unity when
k = 0. Therefore, the eigenvalues of matrix [M]�1 should be greater
than zero. Hence, Eq. (19), which presents the lower bound of each
eigenvalue, can be written as:
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where, Z is a real parameter. Now, the boundaries of Eq. (A-1) are
used in Regions I (Eq. (23)) and II (Eq. (24)):
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In each region, there is an acceptable domain for the fictitious mass
if the stiffness elements of structure satisfy the following
conditions:
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Parameter Z varies between 0 and 2 and, therefore, the coefficients
of Eqs. (A-4) and (A-5) lead to the following boundaries:

0 < Z < 2) 0 <
Z

2� Z
<1; ki 2 I ðA-6Þ

0 < Z < 2) 1 <
2

2� Z
<1: ki 2 II ðA-7Þ

From Eq. (A-7), it is clear that the coefficient of Eq. (A-5) is always
greater than unity. On the other hand, in each row of the linear
structural stiffness matrix, the diagonal component is greater than
or equal to the absolute value of the summation along the rest of
the row:

sii P
Xq
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Consequently, Eq. (A-5) is not valid for all real structures, because
coefficient ( 2

2�Z) is always greater than unity. In other words, there
are structures whose elements of stiffness matrix may not satisfy
Eq. (A-5). Therefore, Region II is not proper for the structural anal-
ysis, while Region I is.
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