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Abstract--The deformation mechanism of cold rolling thin foil is investigated with the aid of the slab method 
in conjunction with an incremental analysis. The interaction between the rolls and foil is explored thoroughly. 
The effects of initial thickness and yield stress of foil materials are discussed in detail. Extensive numerical 
studies show that the pressure and shearing force profiles in the rolfing bite vary significantly with the 
increment of reduction ratio. The distribution of slip and no-slip zones is much more complex than that 
predicted previously. In the regime of rolling extremely thin foils with a constant reduction ratio, the rolling 
load increases and the rolling torque decreases monotonically with decreasing inlet foil thickness. It is found, 
however, that the change of the central elastic/plastic no-slip zones has very little effect on the resultant 
rolling forces. 
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NOMENCLATURE 

absolute values of non-dimensional coordinates of entry and exit contact points of the 
rolling bite, defined as ao/(p.R) and aJ(IxR), respectively 
absolute values of the coordinates of the entry and exit contact points, respectively 
half-thickness of foil 
inlet half-thickness of foil 
constant, defined by equation (8) 
elastic-plastic matrix, see equation (5) 
distance between a pair of surface points at x on foil and roll, see equation (6) 
Young's modulus 
plane strain Young's modulus, defined as E / ( 1 - v  2) 
non-dimeusional initial thickness of foil, defined as 2bo E~/(~RY) 
tangential modulus of the uniaxial tensile curve of foil 
ratio of the total length of no-reduction zones to that of the rolling bite 
normal interface pressure between the foil and roll surfaces 
non-dimensional rolling torque, defined by equation (14) 
shearing interface force between the foil and roll surfaces 
radius of roll 
reduction ratio 
stress deviations, see equation (5) 
non-dimensional rolling load, defined by equation (14) 
normal deflections of roll and foil surfaces, respectively 
coordinates, see Fig. 1 
yield stress of foil 

Greek symbols 
1~ central angle of a pressure element, see equation (8) 
ex, cz, ~txz strains 
0 central angle, a variable 
VL friction coefficient 
v Poisson's ratio 
~r x,~,,rx, stresses 

Superscr ip ts  an d  subscr ip ts  

b back tension 
F foil 
f front tension 
(i) element index 
(J) inlet element indication 
(K) outlet element indication 
R roll 
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1. INTRODUCTION 

PREOSE knowledge of the deformation mechanism of foil is essential for an efficient 
design and utilization of foil rolling mills. Fundamental studies have revealed that 
conventional theories of cold rolling are not satisfactory for describing the process of 
rolling thin foil. The problems are that these theories either neglect elastic deformation 
of the rolls or assume that the deformed roll surfaces remain circular arcs of an enlarged 
radius given by the Hitchcock formula. Furthermore, the critical assumption that slip 
occurs throughout the bite except at the neutral section is no longer valid in the regime 
of thin foil rolling. Hence, when applied to thin gauges, these theories propose that 
there is a limiting gauge below which reduction cannot be achieved; increasing the roll 
load flattens the rolls elastically without causing yield of the strip [1]. Our previous 
research (FJMZ method [1]) shows that the deformation mechanism of a foil in the 
rolling gap varies with the change of the entry foil thickness and reduction ratio. The 
Newton-Raphson method was applied to adjust the boundary positions between slip 
and no-slip, reduction and no-reduction and elastic and plastic deformation zones, 
which were specified by a set of equations and boundary conditions derived from a 
pre-analysis of mechanics. However, much computation effort is usually needed because 
of the complicated distribution of deformation zones. The finite element method is 
also inefficient in dealing with such a particular problem [2]; much more computer 
time is required compared with the FJMZ method. 

The present paper investigates the mechanism of foil rolling in a more straightforward 
way. The slab method is used in conjunction with the incremental theory of plasticity. 
A study is carried out based on the fact that any point in foil material would experience 
loading-unloading processes during its travel through the rolling bite from the entry 
to the exit. Hence, a state of any physical quantities of a point in the foil, including 
stress and deformation, could be obtained by adding a new increment based on the 
last state. A simple algorithm for determining the interaction behaviour between rolls 
and foil is constructed. An overall discussion on the contact pressure, reduction ratio of 
foil, effect of entry foil thickness, yield stress, and the detailed diagram of elastic-plastic 
transition of the deformation zones in the contact arc is conducted. Extensive numerical 
analyses show that the actual deformation mechanism of foil is much more complex 
than that predicted previously. It is found, however, that the change of the central 
elastic/plastic no-slip zones has very little effect on the resultant rolling forces. 

2. F O R M U L A T I O N  OF THE NEW A L G O R I T H M  

2.1. Basic equations 

When the foil inside the rolling contact region is divided into N slab elements, as 
shown in Fig. 1, the physical quantities in the (i+ 1)th element, such as stresses, strains, 
etc. could be expressed as 

b (/+1) = b  (i) + 8b (i), 

Or(/+1) : Or(i) + ~O -(i) z 

q(i+l) = q(i) + 8q(i), 
(1) 

J - 1  J i K K + I  

FIG. 1. Division of slab elements. 
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where 5(. . .)  stands for an increment of the quantity (. . .) .  Hence,  the equilibrium 
equation of the foil in incremental form is given by 

• db(O Bb (i) dido (b(O Bb(O) d~i~i) + (Bi(j) + Bp (0) ~ -  
- ~ - - +  + " dx 

dBb o') 
..[_ [(if(i) ..[_ ai(i)) "Jr" (p(i) + Bp(i))] ~ + Bq(i) = O. (2)  

Assume that the foil is in a plane-strain state; then the geometrical relation between 
the vertical strain and the foil thickness is 

Bb(O 
~E(i) --  b (3) 

If the foil material obeys an isotropic work hardening law after its first yielding, the 
stress-strain relations could be given by 

[5 i ]  = [D]ep [B~], (4) 

where 
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G =  2(1 + v ) '  (5) 

where H '  -- Ep is the tangential modulus of the uniaxial tensile curve of the foil 
material. For elastic-perfectly plastic materials, H '  = 0. In equation (5), sx, sz and 
Szx are stress deviations and 8 is the effective stress. 

2.2. Compatibi l i ty  o f  normal  deflection between foi l  and roll surfaces 

Let d be the distance between a pair of surface points at x on foil and roll. Then 

d =  w R  + wF + ~ -- Ot, (6) 

where w R and w F are the normal surface deflection of the roll and that of foil at x, 
respectively, [ is the initial distance between the two points before deformation and 
ot is the rigid body displacement of the roll centre (in z-direction, see Fig. 1). Provided 
the contact length is small compared with the radius of the rolls, R, equation (6) could 
be rewritten as 

X 2 
d = b o -  b + w R + ~ - R -  ct. (7 )  

Consequently, d (~) > 0 represents no-contact between the roll and foil at point i, d (i) 
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= 0 denotes their contact but d to < 0 should never happen because any material 
penetration between the two surfaces must not occur. As is well known, the contribution 
of shearing stress q(x) to the roll surface deflection is negligible [3]. Thus the normal 
surface deflection relative to the roll centre, wR(x), can simply be calculated by 

N 
w n(i) = ~ (w)~i)ps (i = 1 . . . . .  N),  (8a) 

]=l 

where 

I w * ,  Ioi > 

w = I.w*- ~ (1-  ,,,<- 2,4), Iol<a (8b) 

and 

w * = ~ - E ( 1 - v  2) In - -  + I n  ~ - 1  + I n  . 
- 1  

(8c)  

In deriving the above expressions, we have assumed that the normal pressure p(x)  on 
the roll surface could be approximated by a set of uniformly distributed pressure pC#) 
(j = 1 . . . .  , N) over an arc element with a central angle 2[3. In equation (8c), D is 
equal to RI3 and is set to be the half-length of a slab element. 

2.3. Determination o f  interface shearing force q(x) 

A non-linear model is used to simulate the interface shearing force (see Fig. 2). In 
a slip region between the foil and rolls, the frictional traction q(x) is related to the 
normal pressure by the Coulomb friction law: 

q(x) = y~p(x) ,  (9) 

where y = + 1 when the foil is moving slower than the rolls and y = - 1  when it is 
moving faster. In a no-slip region, however, the foil and the roll surface move with 
the same speed. This indicates that the difference of tangential strains of the rolls and 
foil is constant, i.e. 

eR(x) -- e,(X) = constant. 

Consequently, 

a ' R ( x )  -- a~x(x) = o. ( l o )  

q(x) 
q=p,p  

/ ' ~ ' ~  q < I.tp ' $ 

FIG. 2. The friction law (6 is the creep coefficient, defined as the ratio of the relative slip speed of the roll 
and foil surfaces to the roll surface speed). 
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For the sake of convenience, we now assume that the tangential surface strain of rolls 
could approximately be determined by [3] 

E~ = cld--~+ C2p, (11) 

where 

C1 ~ 
9~r ao(1 - V2R) 

16ER , C2 = - ER 
( 1  - 2vr)(1 + va) 

Therefore 

dSq 
= Cl-- +c2 p. 

Hence according to equation (10), 

dSq _ 1 
7_.(Sex(X) - C28p(x)), (12) 

dx 

which specifies q(x) when Iql is less than V.p(x), as illustrated by the non-linear curve 
in Fig. 2. 

2.4. Entry and exit conditions 
Let the number of the entry contact element be J and that of the exit contact element 

be K. The conditions for determining entry and exit elements are then given by 

a~ y) = ffb, p (y) = 0, q(J) = 0, d eJ) = 0; 
~K)=af ,  p(r)=O, q(r)=O, d ( r ) = 0 .  

(13) 

2.5. The algorithm 
The assembly of equations (1)-(13) leads straightforwardly to a simple iteration 

scheme: 

(a) specify the rigid body displacement of the roll centre, et; 
(b) determine entry and exit contact points according to conditions (13); 
(c) compute b(x) by equation (7); 
(d) with obtained b, calculate stresses with the aid of equations (2)-(5) and (9)-(12); 
(e) check accuracy, if satisfied execute the next step, otherwise return to (b); 
(f) calculate the non-dimensional rolling load and torque by 

W _  
ER ;1 

• p ( x )  d x  
R Y e ( 1  - oo 

{I: } Q = R 2 y 3 ( ~ - ~ _  112) 2 ,oXp(x) dx + ( o ' b b  (J)  - trfb¢r))R ; (14) 

(g) stop. 

3. RESULTS AND DISCUSSION 

3.1. Rolling mechanism 
The variations of the normal and shearing contact forces with the increment of 

reduction ratio, r, are examined. Figure 3 shows that when r is small, say 12%, the 
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FIG. 3. The distribution of interface forces (bo = 0.01 mm, R = 89 mm, ER = 210 GPa, E, = 70 GPa, 
Y = 230 MPa, H '  = 0, vR = 0.3, v = 0.3, Ix = 0.03, ~r --- Orb = 0). 
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normal pressure p(x) distributes like a hill, which is very similar to that predicted by 
conventional theories in plate rolling (e.g. [4-6]). However, the present solution of 
foil possesses a no-slip zone at the central region which separates the reduction zone 
into two, one at the entry side and the other at the exit side. As r increases, the 
pressure profile changes to a double-peak pattern and then keeps this pattern for all 
the large reduction ratios. Besides the entry and exit slip regions, a small inverse slip 
zone, next to the central no-slip region, is observed when r goes beyond 15%. This 
could be recognized by the curves of p(x)/Y and q(x)/(p,Y) where they coincide again 
in a very short interval after the separation by the central no-slip zones. Following this 
inverse slip, there always comes another narrow region of no-slip [see for example 
Fig. 3(b)], which is different from the prediction of the FJMZ model and shows that 
the transition of q from +p,p(x) to -p,p(x) is continuous in this narrow band. 

Pressure peaks are neither sharp nor narrow, by contrast with the FJMZ's demon- 
stration [1]. The shearing force changes more smoothly as well. The behaviour of the 
shearing force indicates that the transition from slip to no-slip is gradual and continuous 
and vice versa. They are characterized by the continuity of slopes of p(x) and q(x) 
curves. Furthermore, the variation of q(x) is rather complex. For small reduction ratios 
[see Fig. 3(a)], it transfers straightforwardly from backward-slip friction at the entry 
side to forward-slip friction at the exit side. For the reductions between 15 and 55%, 
q(x) shows two zones of inverse slip with a central zone of forward no-slip. When r 
exceeds 61%, the curve of the shearing force presents long flat shoulders near the zero 
line, which implies that the foil and roll surfaces in the central area are moving together 
with very small friction and that the contribution to ex R there is mainly from p(x), 
according to equation (11). 

The above interface behaviour relates to the elastic-plastic deformation of the foil 
material. Figure 4 demonstrates the details of the deformation zones of the foil in the 
rolling bite. Clearly, the foil material experiences complex loading-unloading processes 
when it travels from the entry to the exit. Results show that the main reduction is 
obtained at the entry backward- and exit forward-slip regions. In the central area, the 
existence of elastic and plastic no-slip zones may vary from case to case: without any 
central elastic zone when r < 15%, with one when 15 < r < 38%, two when 38 < r 
< 61% and three when r > 61%. Evidently, the transitions from elastic to plastic or 
from plastic to elastic deformation will change the values of q(x) locally because it 
changes the longitudinal strains. However, as the overall profiles of pressure p(x) and 
shearing force q(x) as well as the length of the contact arc do not vary much with the 
distribution of the central no-reduction zones, they have only a tiny effect on the 
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FIG. 5. A comparison of rolling load and torque. (a) Non-dimensional load. (b) Non-dimensional torque. 
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FIG. 6. Effect of entry foil thickness on the resultant rolling forces. 

resultant rolling load and torque. This is confirmed well by comparison of the present 
results with those predicted by the FJMZ model (see Fig. 5). From the point of view 
of engineering application, therefore, it would be reasonable to divide the zones into 
two principal categories: reduction and no-reduction zones. 

3.2. Effect of entry foil thickness 
To examine the effect of the entry foil thickness, a constant reduction ratio is 

maintained throughout the analyses in Figs 6 and 7. The behaviour of foil deformation 
in large thickness regimes is simple and has been discussed extensively (e.g. [1, 4-6]). 
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FIG. 7. Variations of the entry and exit contact points and the lengths of rolling zones. 
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The present discussions therefore focus on the rolling in the regime with extremely 
thin entry gauges. 

The rolling load increases but the rolling torque decreases monotonically with the 
decrease of the entry foil thickness, as shown in Fig. 6, where H = 2boE~/(p, RY) is 
the non-dimensional entry foil thickness. This could be explained by the variation of 
deformation zones shown in Fig. 7. When H becomes smaller and smaller, the inlet 
and outlet contact points approach symmetrical positions with respect to the origin 
x = 0, the central line of rolls. This means that the distribution of the rolling pressure 
profile becomes more symmetrical when H decreases. As a result, according to equation 
(14), Q decreases and W increases. It appears in Fig. 7 that the absolute values of 
non-dimensional coordinates of the inlet and outlet contact points, Ao and AI, approach 
each other when the entry foil thickness decreases. However, they will never meet 
because the curves of Ao and A1 run in parallel as H becomes less than 5. This indicates 
that the contribution of rolling pressure p(x) to the rolling torque will never be zero 
regardless of how small H is. 

The variation of the ratio of the total length of no-reduction zones to that of the 
whole rolling arc, L, yields an important prediction from a new angle (see Fig. 7). 
The fact that L approaches to a constant less than a unit states that there always exist 
reduction zones and hence there is not a limiting gauge as predicted by conventional 
theories. 

3.3. Effect of yield stress 
The yield stress of foil material affects all outcomes of a rolling operation. Figure 8 

shows the variation of rolling load and torque as well as the reduction ratio and outlet 
contact point. The relative length of reduction zones decreases with increasing Y and 
accordingly the reduction ratio drops down remarkably. It is in good agreement with 
practical observations because the material subjected to rolling is getting harder when 
Y rises. Similar to the entry thickness effect discussed above, higher Y makes the 
rolling arc more symmetrical with respect to the central line of rolls. This is implied 
by the increasing value of A1/Ao as well as the reduction of the rolling torque. It may 
be unexpected that the rolling load decreases when the material becomes harder. 
However, the total rolling load is an integration of the pressure profile that depends 
on the detailed deformation of the foil in the rolling bite. Although a large Y value 
enlarges the length of the rolling bite, it lowers the mean level of p(x) at the same 
time. 

4. CONCLUSIONS 

1. The deformation mechanism of foil in the rolling bite is carefully discussed. 
Reduction ratio is a major factor when the entry thickness of foil is given. For small 
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reduction ratios, there exists only a plastic no-slip central zone, but for large ratios 
elastic regions grow out. 

2. A small inverse slip zone emerges when the reduction ratio exceeds 15%. It is 
always followed by a no-slip plastic region which makes the transition of q(x) from 
+p.p(x) to -p.p(x) continuous. 

3. The profiles of pressure and shearing force vary smoothly and their slopes are 
continuous. 

4. The details of the central zones have only little effect on the resultant rolling 
forces; thus the simplification algorithm proposed by [1] is reliable in this sense. 

5. In the regime of rolling extremely thin foils, the rolling bite is almost symmetrical 
with respect to the central line of rolls. There always exist reduction zones and hence 
the contribution of p(x) to the total rolling torque will never be zero. 

6. With a given entry thickness and inlet contact point, the most direct effect of 
increasing yield stress is a remarkable decrease of the reduction ratio and rolling torque. 
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