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Cold rolling of foil

N A Fleck, BA, MA, PhD, K L Johnson, FRS, MA, PhD, FEng, FIMechE
M E Mear, BS, SM, PhD and L C Zhang, BSc, PhD, MEng
Department of Engineering, University of Cambridge

A theory of cold rolling of thin gauge strip is presented which, within the idealizations of homogeneous deformation and a constant
coefficient of Coulomb friction, rigorously models the elastic deformation of the rolls and the frictional traction at the interface. In
contrast with classical theories (3) it is shown that, for gauges less than a critical value, plastic reduction takes place in two zones, at
entry and exit, which are separated by a neutral zone in which the rolls are compressed flat and there is no slip between the rolls and
the strip. Roll load and torque are governed by five independent non-dimensional parameters which express the influence of gauge,
reduction, friction and front and back tensions. Values of load and torque have been computed (for zero front and back tensions) for a
wide range of thickness, reduction and friction and have been found to collapse approximately on to a single master curve.
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NOTATION

contact width from centre-line of rolls to entry
or exit location
semi-thickness of strip
non-dimensional  strip
bE¥*/RY?

semi-length of overlapping triangular element
influence matrices for normal displacement of
rolls

influence matrices for displacement gradient
0u/dx of rolls

Young modulus

plane strain Young modulus = E/(1 — v?)
thickness of strip

integrals (Appendix 3)

semi-thickness =

a
Cauchy integral of ¢ = J {q(x)/(x — x')} dx’
—ao
contact length of strip in nip
friction factor = 2¢q/Y
normal pressure and shear stress, respectively,
between rolls and strip
non-dimensional pressure = p/Y
roll- torque per work roll, per unit width of
strip
non-dimensional roll torque = QE¥%/R?*Y?
overall reduction of strip = (b, — b,)/b,
radius of undeformed work roll
tangential and normal displacements, respec-
tively
non-dimensional group for u = uE§/Y,
velocity of unstrained strip or rolls in x direc-
tion
roll load per unit width of strip
non-dimensional roll load = WE¥/RY?
Cartesian coordinates
non-dimensional coordinate in x direction =
xE¥/RY,
plane strain yield stress of strip
factor describing direction of friction =

a/lql = =1
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& tensile strain in longitudinal x direction

u coefficient of Coulomb friction

v Poisson ratio

¢ creep coefficient = (V; — R)/Wa

g & coordinates (in Appendix 3)

o tensile direct stress in strip

X non-dimensional front or back tension on
strip = g/Y,

T shear stress

Subscripts

c critical

ij, k integers

P peak

A,B,C,D,E, F zones of deformation

S strip

R work roll

0 quantity at entry of strip into roll bite

1 quantity in the central, no-slip zone

2 quantity at exit of strip from roll bite

Superscripts

e elastic

p plastic

- average
rate

1 INTRODUCTION

Conventional theories of cold rolling such as those
developed by von Karmann (1), Orowan (2) and Bland
and Ford (3) are known to be unsatisfactory for describ-
ing the process of rolling thin hard strip or foil. They
either neglect elastic deformation of the rolls or assume
that their deformed profile remains a circular arc of
enlarged radius given by the Hitchcock formula (4). A
further assumption of these theories is that the plastic
deformation of the strip is ‘homogeneous’, that is plane
cross-sections remain plane throughout the bite. It
follows from these two assumptions that plastic
reduction of the strip is continuous through the bite
apart from small arcs of elastic compression at entry
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and recovery at exit. The strip slips relative to the rolls
everywhere except at the ‘neutral point’ (or section)
where the slip direction changes from backwards at
entry to forwards at exit.

When applied to thin gauges these theories [for
example reference (3)] suggest that there is a limiting
gauge below which reduction cannot be achieved;
increasing the roll load flattens the rolls elastically
without causing yield of the strip. This proposition was
investigated by Johnson and Bentall (5) and was found
to be false as, indeed, the industrial production of foil
down to 0.020 mm gauge clearly demonstrates. The
fallacy in the theory lies in the assumption that slip
occurs, and hence limiting friction is sustained, through-
out the bite. Johnson and Bentall (5) considered the
onset of plastic reduction of a thin elastic strip between
two rolls. They showed that, with increasing roll load,
yielding of the strip initiates at two well-separated
points, one close to entry and the other close to exit.
This result strongly suggests that if the roll load is
further increased so that plastic reduction of the strip
occurs, it will take place in two zones, one at entry and
the other at exit, separated by an extensive neutral zone.
In the neutral zone there is no slip between the strip
and the rolls, and the frictional traction does not reach
its limiting value.

This suggestion was explored by Fleck and Johnson
(6) in an analysis of foil rolling in which the elastic
deformation of the rolls was modelled by an elastic
foundation—the ‘mattress model’. This approximate
analysis gave strong support for the hypothesis that
reduction in foil rolling takes place in two zones, one at
entry and the other at exit, separated by an extensive
neutral zone.

In this paper the mattress model has been abandoned
and the rolls are modelled by elastic half-spaces. As in
the Hertz theory, this is a good approximation provided
the length of the contact zone is small compared with
the radius of the rolls, a condition well met in foil
rolling. An analysis of strip rolling which models the
deformation of the rolls in this way has been presented
by Grimble and co-workers (7, 8). Unfortunately,
through not recognizing the possibility of a no-slip
zone, Grimble and co-workers assumed that the fric-
tional traction takes its limiting value throughout the
bite.

Modern developments in modelling the rolling of
thicker gauges use finite element methods to avoid the
simplification of homogeneous plastic deformation of
the strip. The errors involved in this simplification,
which effectively averages stresses through the thickness
of the strip, generally decrease with decreasing thickness
of the strip compared with the length of the bite. It
seems justifiable, therefore, to retain the assumption of
homogeneous deformation of the strip; its influence will
be discussed later.

The most significant unknown quantity in the process
is the friction between the rolls and strip. Its importance
in foil rolling is revealed both by analysis and by the
practical observation that the reduction obtained at a
given load increases with rolling speed through
improved lubrication. The difficulties of predicting the
friction arise from the necessity of working in the
‘mixed’ lubrication regime which is in part hydrody-
namic and in part boundary. In this phase of the project
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the coefficient of friction u is taken to be constant, while
recognizing that its value may depend upon speed and
surface conditions.

Finally, the results presented here will be for an
elastic-perfectly plastic strip (plane strain yield stress
Y, = constant) and for zero front and back tensions
(stresses).

2 FORM OF THE SOLUTIONS

Before proceeding to the analysis, it is instructive to
examine qualitatively a set of solutions for the pressure
distribution p(x) and strip semi-thickness b(x) through
the bite as the thickness of strip is varied. A set of six
such solutions from (a) (inlet thickness, hy, = 2b, =
0.140 mm) to (f) (hy = 2b, = 0.013 mm) are presented in
Fig. 1. Other parameters are held constant: roll radius
R (89 mm), reduction r (50 per cent), coefficient of fric-
tion u (0.03), plane strain yield stress Y, (230 MPa),
plane strain elastic modulus of the rolls E}¥ (230 GPa).
Note the distortion of scales for strip semi-thickness b
in Fig. 1. The ratio of vertical to horizontal magnifica-
tion varies from 85 in case (a) to 910 in case (b).

In case (a) (hy = 0.140 mm) the deformation in the
rolls is small and is adequately allowed for by the
Hitchcock formula. Plastic reduction occurs throughout

/ Line of centres
of rolls

N -

()
(©) | @ ©
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° b, (a) ® ;
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Fig. 1 Effect of strip thickness upon pressure distribution
and deformed shape of strip. R = 89 mm, u = 0.03,
Y, =230 MPa, 6,=0, =0, Ef =3 E* =230 GPa,
r=50%; (a) hy=2by =0.140 mm, (b) hy= 0.060
mm, (c) hy = 0.048 mm, (d) hy = 0.030 mm, (e) hy =
0.020 mm, (f) h, = 0.013mm
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the bite: slip occurs everywhere, changing direction at
the neutral section where the pressure peaks. The pres-
sure distribution p(x), shown in Fig. 1, case (a), and (as
will be seen) the roll load and torque are given closely
by the Bland and Ford theory (3).

In case (b) (b, = 0.060 mm) the increased sharp peak
in pressure produces a departure from the circular
deformed arc in the form of a noticeable indentation of
the roll profile. This is the behaviour analysed by
Jortner et al. (9) and confirmed by the present calcu-
lations. As in case (a), plastic reduction is continuous
and slip occurs everywhere except at the neutral section.
This regime of behaviour will be called ‘regime I.

The Jortner and Grimble theories (9) assume that slip
takes place at all points. If this assumption were applied
to case (c) (h, = 0.048 mm) it would be found that the
pressure peak causes the rolls to deform locally to a
concave shape. This behaviour is unacceptable since it
implies an increase in thickness of the strip within the
bite. The paradox is resolved by recognizing the exis-
tence of a neutral zone of finite length in which there is
no slip between the strip and the rolls. The absence of
slip has the effect of fully ‘containing’ any plastic
reduction of the strip to an elastic order of magnitude.
The thickness of the strip in such a no-slip zone is effec-
tively uniform and the contact pressure adjusts to
satisfy this condition.

With decreasing strip thickness in cases (d) (h, =
0.030 mm), (e) (hy = 0.020 mm) and (f) (h, = 0.013 mm)
the length of the no-slip neutral zone increases and
plastic reduction is confined to short zones at entry and
exit. To flatten a segment of an elastic cylindrical roll
requires the semi-elliptical pressure distribution of
Hertz. This form of pressure distribution is evident in
cases (e) and (f) which have extensive flat no-slip zones.
A characteristic feature of the pressure distribution for
thin strip is the sharp pressure peak which occurs just
beyond the end of the neutral zone and which persists
for overall reductions much less than 50 per cent. It is
associated with the rather sharp re-entrant corner in the
roll deformation at the onset of plastic reduction at exit
and is discussed in Appendix 3.

In cases (c) and (d), where the pressure rises steadily
through the no-slip zone, the stresses in the strip in that
zone are at yield and the material is in a state of con-
tained plastic flow. This regime of behaviour will be
called ‘regime IT'. If the pressure falls in the no-slip zone,
as it does after the line of centres in cases (¢) and (f),
elastic unloading of the strip can occur. This is ‘regime
III". The details of this behaviour are discussed in
Appendix 2.

It is apparent that the bite contains a number of
separate zones, depending upon the regime of oper-
ation:

1. Elastic zone at entry. The strip is slipping back-
wards relative to the rolls. For practical values of
reduction this zone is very small and can be
neglected.

2. Plastic reduction at entry. The thickness is reduced
from 2b, to 2b,.

3. No-slip neutral zone. The strip thickness is approx-
imately constant at 2b,. If the pressure gradient
dp/dx is positive throughout the neutral zone [for
example Fig. 1, case (d)], the strip is in a state of
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contained plastic flow. A decreasing pressure [for
example Fig. 1, cases (¢) and (f)] can lead to elastic
unloading.

4. Plastic reduction at exit. The thickness reduces
from 2b, to 2b,. A peak in pressure occurs where the
slip direction reverses.

5. Elastic zone at exit. This is again small for practical
reductions.

To proceed it is now necessary to establish the equa-
tions that have to be satisfied in these different zones.

"3 GOVERNING EQUATIONS
3.1 Strip

An element of strip in the bite is shown in Fig. 2a. The
strip enters with thickness h, = 2b, and is compressed
in plane strain to a thickness h(x) = 2b(x) at a position
x from the line of centres of the rolls. The rolls exert a
pressure p(x) and a frictional traction g(x) on the surface
of the element. If 6,(x) denotes the average longitudinal
stress on the cross-section, and the gradient of the
profile db/dx is small, equilibrium of the element gives

b9 S22 + 5,09 + P9} o+ 49 = 0 0

For strip which is thin compared with the length of the
bite, during plastic deformation the Prandtl stress field
[see reference (10)] is a good approximation:

o2) = —p (2a)
z
MORE (@)
(ax - a'z)2 + 4T:x = Ysz (20)
which gives

o= nfi- G}

where z is the height above the centre-plane of the strip.
Averaging through the thickness gives

o, +p=YI(m) 3
where
sin"!'m+ m\/(l —m?)

2m

I(m) =

and m = 2q/Y,. The factor I(m) reduces from 1.0 to n/4
as m increases from 0 to 1.0. Thus, provided the fric-
tional traction g is appreciably less than the yield stress
in shear (Y,/2), the yield criterion (3) may be written

6.{(x) + p(x) ~ X (3a)

This equation will be used in conjunction with equation
(1) where the strip undergoes plastic reduction, and o,
(without the overbar) will be used to denote the longit-
udinal stress averaged through the thickness.
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., of rolls

Rolls
1| [~ ¢
i L._ -t i
Stnp
~J. .
Backward / A\ Forward
slip Neutral slip

section

(a)

Strip

(b)
Fig. 2 Definition of stresses and nip geometry

Reduction in thickness of the strip due to elastic com-
pression is neglected in comparison with the elastic
compression of the rolls. Longitudinal elastic strain in
the strip is important in its influence on slip. The total
(elastic + plastic) longitudinal strain in the strip ¢, may
be expressed as

1
& = & +s"—~E;{ }+a" “
where &P is the longltudinal plastlc strain in the strip, €
is the longitudinal elastic strain in the strip and v, and
E¥ are the Poisson ratio and the plane strain Young
modulus for the strip.

3.2 Rolls

Provided the contact length is small compared with the
radius R of the rolls, the undeformed profile of the
upper rolls z(x) may be approximated by

z(x) = by — (a5 — x*)/2R )

where —ay, is the coordinate of the point of entry to the
nip. This point is taken as a datum for normal displace-
ments. The semi-thickness b(x) of the strip at any point
x in the bite is then related to the elastic compression of
the roll v(x) at that point by (see Fig. 2b)

b(x) = by —

B4 o) — (—ao) ©)
The effect of the frictional traction g(x) on normal dis-
placement is negligible [reference (11), p. 20], where-
upon

az + xl

o
N1
p(x) ]

9 = ol ~a0) = = dx ()

’
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where a, is the exit point. Combining equations (6) and
(7) gives

a3 — x? N 2 (e
2R nE¥

ao+x

b(x) = by — p( ) In dx’

)

3.3 Interface

In a region of slip between the strip and the rolls, the
frictional traction ¢(x) is related to the normal pressure
p(x) by the Coulomb law:

q(x) = opp(x) (9a)
where « = +1 when the strip is moving slower than the
rolls and « = —1 when it is moving faster.

In a region where there is no-slip

[4(x)| < up(x) (9b)

and the strip and the surface of the rolls move with the
same velocity. This condition demands that the differ-
ence in longitudinal strain between the rolls and the
strip is constant and given by [see reference (11), p. 242]

eg(x) — g(x) = —VL;—VR = constant ¢ (10)
R

where V4 is the peripheral speed of the undeformed roll,
V, is the entry speed of the strip and the constant & is
the ‘creep ratio’. The longitudinal strain in the strip ¢, is
glven by equation (4) and that in the surface of the rqlls*
is given by [see reference (11), p. 20] .

ou,,
&r(x) = E

_ 1 1—2v 1 p(x)—ij‘az xq(x’) e

1—vg EX nE¥ J_ .

Substituting expressions for ¢(x) and g(x) from equa-
tions (4) and (11) into equation (10) gives the condition

of no-slip:
v, 1— 2w E¥
""(x)+<1— A E*)”( )
2 E¥
+-=—=Jx)+ E*s = —E*¢ (12
n E¥
where

J(x) = J_az xq(_x))c

3.4 Assembly of equations in each zone

The equations can now be assembled which have to be
satisfied in the different zones in order to solve for the
pressure distribution p(x) and the deformed shape b(x)
throughout the bite.
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3.4.1 Elastic slip (elastic zones at entry and exit)

Since transverse elastic compression of the strip is
neglected db/dx = 0, so that equation (1) reduces to

d
S% 4 aup(x) = 0 (13)
dx

where b = b, at entry and b, at exit.

b

3.4.2 Elastic no-slip (neutral zone)

Here the plastic strain in the strip is constant: & =
(bo — by)/by, so that equation (12) becomes

Vg 1 —2vg E¥
0.9 + (1 s E;;)”(")

2 E¥
+ — == J(x) = constant (C) (14)
n Ef
Note that, for practical values of u, g(x) is always much
smaller than p(x) and, for aluminium strip, E* ~ { E¥,
so that the term in J(x) in equation (14) is relatively
small. Thus

a.(x) + 0.62 p(x) ~ C (14a)

3.4.3 Plastic reduction

Since slip must accompany plastic reduction except at a
neutral point and the yield condition (3a) applies, equa-
tion (1) becomes

d db
—b(x)d—z-+ Y, = +aup =0 (15)

3.4.4- Plastic no-slip (contained plastic)

If the ¢ondition for elastic no-slip, given by equation
(14), cannot be satisfied without violating the yield con-
dition (3a), then some plastic deformation must occur
according to equation (12). However, the elastic strains
in the rolls, given by equation (11), are small, which
demands that any plastic strain in the strip &f must be
constant to an elastic order of magnitude to satisfy the
no-slip condition equation (14). Thus variations in
thickness of the strip due to contained plastic deforma-
tion may be ignored compared with the elastic compres-
sion of the rolls. For the purpose of calculating the roll
pressure p(x), it may be assumed that b(x) = constant =
b, in the neutral zone. Equation (1) then becomes

do d
by g +4() = —by - +4() =0 (16)

"The roll deformation equation (8) applies throughout
the bite. It must be solved simultaneously with equation
(15) in the plastic reduction zones. In the elastic zone at
entry, the neutral zone and the elastic zone at exit the
thickness of the strip is constant at b,, b, and b, respec-
tively. Given the entry position a,, initial strip thickness
by, entry and exit tensions o, and ¢, , we determine the
pressure distribution p(x) and the deformation b(x)
throughout the bite. The subdivision of the neutral zone
into elastic and contained plastic zones, leading to the
determination of the stress in the strip ¢,(x) and the fric-
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tional traction g(x) throughout the bite, is found by a
subsequent calculation using equations (14) and (16).

4 NUMERICAL IMPLEMENTATION

To solve the integral and differential equations (8) and
(11) for the deformation of the rolls, the pressure p(x)
and frictional traction ¢(x) are approximated by
piecewise linear distributions, as shown in Fig. 10. The
contact arc is divided into a total of N (typically 100)
overlapping triangular elements. The N + 1 points at
the ends of the elements, equally spaced a distance c
apart, are termed nodes. The unknowns of the problem
are the values of Pj, 4; and b; at the nodes. The dis-
placement v; and the displacement gradient (du/dx); are
obtained by summing the contributions from each
element of traction over the whole contact arc. Thus

v; = C;;q; + Dy;p; 17

Ou , ,
2 ) = Ciidi+ Dyp; (18)

where a repeated suffix denotes summation over the
N + 1 nodes. As mentioned earlier, the problem is
greatly simplified by neglecting the effect of frictional
traction g upon the normal displacement v, that is by
putting C;; = 0 in equation (17). This has the effect of
decoupling equation (8) for the pressure from equation
(11) for the frictional traction. The influence coefficients
D;;, Ci; and Dj; for triangular elements are easily
obtained in closed form [reference (11), pp. 27, 148].
Expressions are given in Appendix 1. In discrete form
equation (8) for the roll deformations becomes

a5 — x}

2R

where, by equation (17), v; = D;;p;and v(—aq) = Dy p;.

In a plastic reduction zone the equilibrium equatuon
(15) for the strip can be integrated over an element from
X;_4 to x;, assuming a piecewise linear variation of both
pressure p(x) and the inverse of the thickness 1/b(x), to
obtain

b, 1 1
& 1“<b,~_1) * Pi-y {1 - “"C<3bi_1 * 6b.->}

R
A 3b,_, T b,

b;=by — + v; — v(—ag) (19)

(20)

Within the central neutral zone b; = constant (b,).
Numerical experimentation has shown that for practi-
cal reductions (r > 10 per cent) the elastic zones at entry
and exit are very short and can be neglected. Thus at
entry b(—ag)=by, and p(—ay) =Y, -0, at exit
(db/dx), = 0 and p(x,) = Y, — a,.

To obtain a solution, values of a,, by, 64 and o, are
selected. The strategy consists of iterating the pressure
distribution. At each stage the deformed thickness of the
strip b; is given in terms of the current pressure by equa-
tion (19); equation (20) is then used to update the pres-
sure. To obtain a fully converged solution, however, it is
also necessary to locate the boundaries of the different
zones discussed in Section 2. Details of the procedures
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to obtain complete solutions in the three different
regimes defined in Section 2 are outlined in Appendix 2.

A further feature of the regime III [cases (¢) and (f) in
Fig. 1] calls for comment: the sharp pressure peak close
to the end of the neutral zone. This feature gave rise to
numerical difficulties in the form of unbounded pres-
sures. Accordingly an asymptotic solution in closed
form in the vicinity of the peak was sought (12). It is
based on concepts from fracture mechanics and is dis-
cussed in Appendix 3. Two conclusions follow from this
analysis: (i) for the pressure to be bounded and contin-
uous through the peak there should be no discontinuity
in surface gradient db/dx through the peak and (i) a
small region of plastic reduction must exist to the left of
the peak, in which the strip slips backwards relative to
the rolls. The peaks in regime III [cases (¢) and (f) in
Fig. 1] are located at neutral sections in the same way
as the peaks in cases (a), (b), (c) and (d). The fact of
no-slip at the peak determines the value of the creep
ratio ¢ in equation (12). With this value of &, the condi-
tion of no-slip is satisfied in the contained plastic zone
by plastic flow &? of appropriate magnitude.

5 RESULTS

5.1 Dimensional analysis

Within the idealization of the problem outlined above
the dependent variables are: strip thickness b(x) and roll
pressure p(x) at a location x relative to the centre-line of
the rolls, and the roll load W and torque Q per unit
length of the rolls. The independent variables are: front
and back tensions ¢, and ¢, , radius R and plane strain
modulus E¥ of the rolls, inlet thickness 2b, and plane
strain yield stress Y, of the strip, and the coefficient of
friction u. Appropriate non-dimensional variables are
sought.

By writing
xE¥ bE¥? p
X=(=2);, B= ; ==;
(RY)’ | (RY? PPy
HEE ' ] o @)
U=2R. — 0. o= 22
v Ty T,
the roll deformation equation (8) can be written as
B(X) = By — 3(X5 — X?)
2 (% X,— X
| PX)In|T—|dx 22
+nL0(-)nX—X' @2
and equation (15) for plastic deformation of the strip as
dP dB
—BX) 7 + 55 +aUP(X) = 0 (23)

Given o, By and U, and an arbitrary choice of inlet
position X, (= —ao E§/RY ), the exit boundary condi-
tions determine the location X, (= a, EX/RY,) of the
exit.

Thus

P(X), B(X) =f[Bo, X0, U, %y, Z,] (24)
The roll load per unit length is given by
az
W = j p(x) dx
a0
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or

W= =
RY?

and the roll torque per unit length by

v = WE FZP(X) dx (25)

Xo

Q= f p(x)x dx + (6oby — 05 b,)R

or

- QEr (%
Q=2 =J P(X)X dX + ByZ, — B,Z,  (26)
o

X

In particular equation (22) yields the exit thickness
B,(= b, E*/RY?) and hence the reduction

by—b, Bo,—B,

= 27

r by B, @7
This enables X, to be eliminated so that

W’ Q_ =f[BO, U’ r, 20’ 22] (28)

The roll load and torque are governed by five indepen-
dent non-dimensional parameters representing the
effects of thickness B, = (b, E¥?/RY?2), reduction r, fric-
tion U = (uE}/Y), and front and back tensions X, =
0o/Y, and ¥, = 0,/Y,. These variables will be used in
the presentation of results.

5.2 Distributions of p(x), b(x), 6,(x) and g(x)

A selection of distributions of pressure and strip thick-
ness through the nip with varying initial thickness is
presented in Fig. 1 and has been discussed qualitatively
in Section 2. Three regimes of behaviour were identi-
fied: I (thicker strips) plastic reduction is continuous; IT
(intermediate thickness) plastic reduction takes place at
entry and exit separated by a neutral (no-slip) zone of
contained plastic deformation; III (thinner strips) the
pressure reaches a maximum and then falls, leading to
elastic unloading of the strip. Complete solutions for
pressure p(x), thickness b(x), strip tension a,(x) and fric-
tional tractions g(x) representative of the three regimes
are presented in Fig. 3.

The pressure distribution in regime I (Fig. 3a) dis-
plays the familiar ‘friction hill, with a peak at the
neutral section where the slip and hence the friction
change sign. As explained in Appendix 3, this peak,
coinciding with a reversal of slip and friction, persists in
regimes II (Fig. 3b) and III (Fig. 3c) and is located near
the downstream end of the neutral zone. It follows from
equation (15) that reducing the strip thickness increases
the height of the friction hill and hence leads to increas-
ing contact pressures and roll deformation.

The results presented in this paper are all for zero
front and back tensions. In these circumstances the
plastic reductions in entry and exit zones are of compar-
able magnitude. However, it is apparent from Fig. 1
that the reduction at entry as a fraction of the total
reduction decreases with decreasing strip thickness.

Apart from the small elastic zones at entry and exit
which have been neglected, the different zones are
shown in Fig. 3. The conditions which fix the positions
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-15 -0.5

<~——————— 1t —————

X
(9 mm

Fig. 3 Regimes of strip behaviour. Note that zones A and E experience plastic reduction
with backward slip. Zones B and D experience contained plastic deformation with no
slip. Zone C experiences elastic deformation with no slip and zone F experiences
plastic reduction with forward slip. In all cases R = 89 mm, y = 0.03, Y, = 230 MPa

and E} = 230 GPa

(a) Regime I (hy = 2by = 0.060 mm, r = 50%)
(b) Regime II (b, = 2b, = 0.020 mm, r = 10%)
(c) Regime III (h, = 2b, = 0.020 mm, r = 50%)

of the boundaries of the different zones are discussed in
Appendix 2.

5.3 Roll load and torque

Once the pressure distributions have been found the roll
load and torque can be computed from equations (25)
and (26). The calculated values of non-dimensional roll
load W are plotted as a function of non-dimensional
strip thickness B, and reduction r in Fig. 4, for U = 30.
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The corresponding plot for roll torque @ is given in Fig.
5. Note that W increases with increasing reduction. For
a given reduction W increases with decreasing strip
thickness in regimes II and III. However, no limiting
gauge is predicted. There is a dramatic switch in the
W-B,, response as the strip thickness is reduced from
the Jortner regime I to regimes II and III. At large strip
thicknesses, in regime I, the load response merges into
the Bland and Ford (3) solution. In regimes II and III
the W-B, response is almost linear on log-log axes:
contours of finite reduction are roughly parallel to the
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C \. . Numerical solution
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Fig. 4 Effect of entry strip thickness B, = bEF?/RY? and reduction r upon
roll load W = WE%/RY2; U = uE¥/Y, = 30

onset of reduction solution given by Johnson and
Bentall (5).

Now consider the torque response in Fig. 5. Q
increases with increasing reduction r as expected. At
large strip thicknesses, in regime I, the contact region
lies to the left of the centre-line of the rolls, as shown in
Fig. 2; the pressure distribution acts through a large
lever arm and the torque is high. As the strip thickness
is reduced the centre of pressure of the nip moves
towards the centre-line of the rolls and @ decreases. In

the limiting case of zero reduction (5) p(x) is symmetric
about the centre-line of the rolls and @ is zero.
Results for W and Q as a function of B,, U and r
- were each successfully collapsed on to a single ‘master
curve’, by a multi-variable regression analysis. The
combinations of non-dimensional groups to achieve
this are (WU 7% 070} (QU 134-162} apd
{Bo, U~1-24r79:59} "as shown in Fig. 6. Data are shown
for a wide range of values for B,, U and r. The bound-
aries between regimes I, IT and III are also shown. For

103 n
o0
X i
o
o
Q g
I 2 30%
o 10°F
L | 4
’/
i 1.,’ 10%
" Regime III Regime I
i o Numerical solution
Regime II - ==~ Fleck and Johnson (6)
— === Bland and Ford (3)
10 /| ] R N A | " e ol
102 103 104

B, = bE;*IRY?

Fig. 5 Effect of entry strip thickness B, = bE§*>/RY? and reduction r upon
roll torque Q = QE¥?/R?Y3; U = uE¥/Y, = 30
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Fig. 6 Master curves for (a) roll load and (b) roll torque, for
10% <r < 50%,15< U <45and 2 < H < 300

example the boundary between regions I and II occurs
at

BO U—1.24r—0.50 ~ 6

that is at a critical inlet gauge h, given by

h . 2b . }75 0.76
T? — TO ~12 r0.5'u1.24<E_i:) (29)

It is not clear why this particular combination of
non-dimensional groups is able to correlate the results,
but some insight is gained by the observation that the
independent variable {B, U~ !-24r~0-3%} correlates with
the parameter {2b,/ul} as shown in Fig. 7. Here, 2b, is
the inlet strip thickness and [ is the length of the contact
region so that 2b,/l is the aspect ratio of the nip. The
parameter 2by/ul is also the dominant non-dimensional
group in the Bland and Ford regime, as discussed by
Johnson (11).

5.4 Comparison with rolling mill data

Direct comparison of the theoretical results with meas-
ured data for a rolling mill is difficult because of the
lack of knowledge of a value for the Coulomb friction
coefficient u. The approach adopted is to equate the
theoretical and experimental values of the roll load in
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10

Regime III

Bou—1.24r—0.5

2by/ul

Fig. 7 Correlation of aspect ratio of nip 2b,/ul with the com-
bination of non-dimensional groups B, U~ 1-24r~%3,
for 10% <r < 50%, 15 < U <£45and 2 < H < 300

order to deduce a value for y, and then use the theory
to predict the torque.

Calculations were carried out as described above for
values for strip thickness, and front and back tension in
accordance with mill data provided by Davy—-McKee
(Poole) Limited. Non-dimensional load W and torque Q
are plotted against the friction parameter U in Fig. 8.
The measured load W = 58 gives u = 0.026. Using this
value of p the predicted torque is @ = 370; the meas-
ured torque is 0 = 480. The torque was measured by
strain gauges in the drive shafts and is accurate to
within 10 per cent. A discrepancy between the predic-
tion and the measurement remains, which is most likely
to be a consequence of the simple Coulomb model of
friction.

5.5 Comparison with the theory of Fleck and Johnson

The predicted roll loads and torques are shown in Figs
4 and 5 for the current theory, the Fleck—Johnson
theory (6) and the Bland and Ford (3) theory. Note that
the three models converge at large strip thicknesses
(Bo > 10%) as expected. The Fleck and Johnson model
diverges from the current theory as strip thickness is
reduced. At all reductions 10 per cent < r < 50 per cent,

200 2000
w
100 — — 1000
t;:» [~ L
5 ~
=T 1SS
= —— *el
] rs‘l
50—
N :
20

U = uE§/Y,

Fig. 8 Comparison of model with mill data. b, = 0.0365 mm,
Y, =230 MPa, r = 57%, 6, = 0.107Y,, 6, = 0.132Y,,
1100 aluminium alloy on third pass
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10 +
I Perturbation
| solution
Full numerical
- solution
5|
],
///\\ Fleck—Johnson
solution (6) _
A
0 1 1
-1.0 -0.5 0 0.5 1.0
X
mm

Fig. 9 Comparison of full numerical solution, perturbation
solution and Fleck and Johnson (6) solution, for the
case R =89 mm, b, =0.01 mm, r =25%, Y,=230
MPa, E¥ =230 GPa, E¥ =80 GPa, u =0.03, g, =
g, =0, By = 112. The full numerical solution gives
W = 118, the perturbation solution gives W = 120
and the Fleck and Johnson (6) solution gives W = 62

the Fleck and Johnson model underpredicts rolling load
by up to a factor of 2. The two models agree in their
prediction of torque to within a factor of 2 for 30 per
cent < r < 50 per cent. At r =10 per cent, the Fleck
and Johnson model predicts torques which are an order
of magnitude below those of the current theory. A com-
parison of pressure distributions is shown in Fig. 9 for a
- particular case where r = 25 per cent.

6 CONCLUDING DISCUSSION

In treating the rolls as elastic half-spaces the theory pre-
sented in this paper is considerably more rigorous than
the earlier theory of Fleck and Johnson (6) which
assumed that the perturbation in the deformed shape of
the rolls from the Hertzian profile is that of an elastic
foundation. In contrast with earlier work, both theories
predict that with thin gauges plastic reduction zones at
entry and exit are separated by a neutral zone in which
there is no slip between the strip and the rolls and hence
no significant reduction in thickness. The more rigorous
treatment of roll deformation reveals a sharp ‘friction
hill’ just beyond the exit to the neutral zone, which was
absent in the earlier analysis. These differences lead to a
difference in the relative amount of plastic reduction at
entry and exit and to a significant quantitative differ-
ence in the predicted roll loads and torques. The present
theory is expected to be more reliable in all these
respects. '
The principal idealizations in the theory are:

(a) no strain hardening
(b) homogeneous deformation
(c) constant coefficient of Coulomb friction.

In the final stands of an aluminium foil mill the rate
of strain hardening is small, typically 4 per cent through
the penultimate stand. Some allowance for strain hard-
ening could easily be made by ascribing different values
of Y, to the reduction zones at entry and exit.

In assuming homogeneous plastic deformation equa-
tion (3a) has been taken as the yield condition, that is
I(m) in equation (3) has been assumed to be unity. Now
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I(m) exceeds 0.9 provided m(= 2up/Y,) < 0.7. Data pro-
vided by Davy-McKee from tests on a rolling mill
suggest a value for u of 0.03, so that this condition is
satisfied (just) for all the plastic reduction zones shown
in Fig. 1.

The most contentious idealization in this analysis lies
in the use of a constant coefficient of friction. The evi-
dence from foil mill practice that the reduction is sensi-
tive to speed strongly suggests a hydrodynamic
component in the friction. However, the calculated film
thickness is of the order of 0.1 um, which is comparable
with the roughness of the strip, so that operation is in
the so-called ‘mixed lubrication’ regime. There seems to
be no point in refining the rolling model until more is
known about the nature of friction in the roll bite. Some
steps in this direction have been taken recently by Sut-
cliffe (13, 14).
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APPENDIX 1
Influence coefficients for a piecewise linear traction

A piecewise linear distribution of traction can be
regarded as the superposition of overlapping triangular
elements each of base 2c as shown in Fig. 10. The influ-

Pj+i
pj

Fig. 10 Fundamental elasticity problem for the rolls

ence coefficient for the deflexion at x = ic due to a pres-
sure element centred at x = jc is required. It follows
from the expressions given in reference (11), p. 27, that
the influence coefficients defined in equations (17) and
(18) may be written

c
Y 2nE¥

{(k + 1)? In(k + 1)> + (k — 1)? In(k — 1)?

— 2k? In k*} + constant (30)

, 1 k +1)\2

+(k—1) ln<k ; 1>2} (31)

’_ 1_2vR ..
ECA TR S
~o, j#i ()

where k =i —j.

|

APPENDIX 2

Solution procedure

The numerical implementation of the theory has been
discussed in general terms in Section 4. To effect a solu-
tion it is first necessary, tentatively at least, to identify
the regime of behaviour. Details of the procedure
appropriate to each regime are given below.

Regime 1

This is the Jortner regime in which plastic reduction
and slip occurs throughout the nip [Fig. 3a; cases (a)
and (b) in Fig. 1]. There are only two zones, A and F, of
backward and forward slip. The boundary x, and the
exit location x, are chosen arbitrarily. After converged
distributions of pressure p(x) and strip thickness b(x) are
obtained using equations (19) and (20), the positions of
the boundaries x,r and x, are moved by a Newton—
Raphson procedure until the exit conditions o, = o,
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and db/dx =0 are satisfied at x = x,. The value of
reduction r associated with the chosen values of a, and
b, follows from the exit thickness b, .

When a converged solution for pressure is obtained
the longitudinal stress in the strip and the frictional
traction at the nodes are given by

(60 =Y, — p; (33)
and
q; = oup; (34)

For a solution to exist in regime I, db/dx < O through-
out the nip.

Regime 11

For strips thinner than in regime I, a central no-slip
zone of contained plastic deformation exists for the
strip. This is shown in Fig. 3b and is exemplified by
cases (c) and (d) of Fig. 1. In this regime the pressure
increases monotonically from entry to the pressure
spike.

The bite is split into four zones as shown in Fig. 3b:
(A) plastic reduction with backward slip; (B) contained
plastic deformation with no slip; (E) plastic reduction
with backward slip; (F) plastic reduction with forward
slip.

The solution procedure is to iterate the pressure dis-
tribution within the plastic reduction zones in a similar
manner to that for regime I. We fix a, and b,, guess
initial values for the boundaries x,5, Xgg, Xgr and a,,
and assume an initial pressure distribution in the plastic
reduction zones A, E and F. Since the strip thickness is
constant in the contained plastic zone B, equations (6)
and (17) give

2 2
Xi—1 — Xi

2R

where j ranges over all nodes and i refers to nodes in the
contained plastic zone. Equation (35) is used to deduce
the pressure in the contained plastic zone from the
assumed pressure distribution in the plastic reduction
zones A, E and F. The strip thickness is then calculated
from equation (19), where v; = D;;p;. The pressure
profile is updated in zones A, E and F by integrating
the equilibrium equation, and in zone B by equation
(35), until a converged solution for p(x) and b(x) is
obtained. The boundaries x,5, Xgg, Xgr and a, are
moved in order to satisfy the four conditions:

(Dij - D(i—l)j)pj = (3%5)

1. Plastic reduction stops and hence db/dx = 0 at x,5.
This is equivalent to the statement dp/dx is contin-
uous at x,p.

2. Slip occurs at xgg (¢ = up). The shear stress g(x) is
calculated at nodes in the contained plastic zone by
equation (16) in finite difference form:

by(Piv1 — Pi-1) — qlXi+1 — Xi41) =0
no sumon i (36)

3.p=Y —o,atx=a,.
4. Plastic reduction stops and hence db/dx = 0 at x =
a,.
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Boundaries x,5, Xgg, Xgr and a, are moved by the
Newton—Raphson method until the four conditions are
met at the three boundaries and the exit.

Regime 111

The thinnest strips give rise to a local Hertzian-type
pressure maximum near x = 0, as shown in Fig. 3¢ and
by cases (e) and (f) of Fig. 1. In these cases the strip
unloads elastically in zone C under the falling pressure.
Two cases are distinguished: (1) the pressure peak near
exit is higher than the Hertzian pressure maximum near
x = 0 [case (e) of Fig. 1]; and (2) the pressure peak near
exit is lower than the Hertzian maximum [case (f) of
Fig. 1]. The simpler behaviour of case 1 will be con-
sidered and the details of case 2 omitted.

Assuming the strip thickness to be constant in the
central no-slip regime (comprising the contained plastic
zones B and D and the elastic no-slip zone C), the posi-
tions of the boundaries xgc and xcp have no influence
on the pressure distribution p(x). Hence p(x) and bound-
aries X,p, Xpg, Xgr and a, are found in an identical
manner to that described for regime II. The boundaries
xgc and xcp, are located as follows.

In the no-slip zone B where the pressure is increasing,
equation (12) shows that a small (contained) positive
plastic strain rate &P is required to prevent the yield con-
dition (3a) being violated. The contained plastic zone B
ends when & = 0. Neglecting the small term in J(x),
equation (12) shows this to occur when dp/dx = 0, that
is at the pressure maximum, which is taken to a good
approximation as the location of the boundary xpc.
Elastic unloading follows the contained plastic zone and
the stress in the strip o,(x) is given by equation (14a).
The elastic zone C continues until yield is again reached
at the boundary xcp, which by equation (14a) occurs
when the pressure rises to its earlier maximum, that is
p(xcp) = p(xpc). As before, the shear traction in the
no-slip zones C and D is given by equation (36).

The nature of the solution in the central no-slip zone
is more complex when p(xgg) is less than p(xgc). Fortu-
nately, the pressure profile, strip thickness, rolling load
and torque do not depend upon the detailed solution in
the central no-slip zone, and there is no practical
requirement to solve for the central zone. Admissible
solutions have been found, but are not detailed here.

APPENDIX 3
The nature of the pressure peak in regimes II and III

In order to clarify the solution in the vicinity of the
pressure peak at the end of the neutral zone in regimes
IT and III, an approximate analytical solution to the
‘problem was developed by Greenwood et al. (12) using
results from fracture mechanics.

The region in the location of the peak is modelled as
shown in Fig. 11. For a peak located at x,, the roll to
the left of the peak [{; = (x, — x) > 0] is assumed to be
deformed to a perfect flat [v(£,) = 0] and that to the
right of the peak (¢ = x, — x > 0) is subjected to a pres-
sure p(¢) determined by the plastic deformation of the
strip, that is by equation (15). The substitution

9() = p(&) — pola® — (x, + &}
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& 3

No slip Forward slip

Backward
slip
Fig. 11 Nature of solution at start of exit plastic zone
—— Perturbation solution via elastic fracture
mechanics theory (assume v = 0 for £, > 0)
——— Full numerical solution (v > 0 in backward slip
plastic zone E)

will be made, where a = 2p, R/E¥ and p, is the pressure
at x = 0. It follows from the work of Barenblatt (15)
and Schapery (16) that

PED = Touzy 90+ INE) +0E) ()
and
) = KY0n) — 3 IE7 40 (9
where
- -/@ R o
and
=%f’§—g—jgdc (0)

It is clear from equation (37) that the peak pressure at
¢, = 0 will be bounded and continuous if, and only if,
K = 0; whereupon

PED) = 9(0) + LJE, 41)

and

oE) = — L o “2)
- 3E*

close to the peak, which shows that the deformed profile
is smooth, with no discontinuity of gradient at the peak.
However, the pressure gradient dp/&; given by equation
(41) is singular at £, = 0 (see Fig. 11 and note that [ is a
negative quantity). The longitudinal stress o, must also
be continuous and of value p — Y, at the peak, which
leads to the conclusion that the pressure distribution of
equation (41) causes yield adjacent to the peak. In order
to satisfy the yield condition in this region it follows
that there must be a small plastic reduction zone E to
the left of the peak in which the strip is slipping back-
wards relative to the rolls. The peak has therefore the
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. characteristics of the classical ‘friction hill’ similar to
cases (a) and (b) of Fig. 1. The peak thus coincides with
a neutral section at which the direction of slip, and
hence ¢, reverses (see Fig. 11).

The condition that K = 0 provides a relation which
relates the position of the pressure peak x, to the outlet
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position x, . Using the approach outlined in this Appen-
dix, Greenwood et al. (12) have obtained an approx-
imate semi-analytical solution for pressure distribution
p(x) and deformed shape b(x) which compares well with
the complete numerical solutions (see Fig. 8).
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