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Abstract--This paper proposes a new mechanics model and a semi-analytical method to solve the 
problem of a thin strip on an elastic foundation stamped by an elliptical rigid punch. The strip was 
divided into three parts according to its contact with the punch and foundation. Analytical solutions 
were derived individually for each part using the theories of contact mechanics and strip bending 
with large deflection. A numerical algorithm was then developed to obtain the interface forces 
through an iteration by considering the compatibility conditions of deformation between the neigh- 
bouring parts of the strip. The main advantages of the present method are that it relies on fewer 
assumptions, is with clear mechanics meaning throughout the analysis, and makes the calculation 
more efficient. Copyright © 1996 Elsevier Science Ltd. 
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NOTATION 

half lengths of the minor and major axes of the ellipse-based cylindrical punch, see Fig. 1 
half length of the contact zone between the punch and strip 
half length of the contact zone between the strip and foundation 
Young's modulus 
external stamping force per unit width 
thickness of the strip 
the second moment of area per unit width of the strip cross section = h3/12 
elastic stiffness of the elastic foundation 
dimensionless bending moment, defined by eqn (10) 
dimensionless shear force, defined by eqn (10) 
contact stress 
dimensionless normal radius of ellipse, defined by eqn (9) (see also Fig. 4) 
dimensionless length of an infinitesimal strip element, defined by eqn (9) (see also Fig. 4) 
dimensionless membrane force of the strip, defined by eqn (10) 
deflection of the foundation surface, in the y-direction 
deflection of the cantilever beam, vertical to the  z-axis, see Fig. 2(c) 
global Cartesian coordinate system, defined by eqn (9), (see also Figs 2(a) and 3) 
local axial coordinate of the cantilever beam, with its origin at end A, see Fig. 2(c) 
computational parameters, defined by eqn (11 ) 
polar coordinate variable of ellipse, see Fig. 3 
included angle of the external normal of the deformed strip surface at 0 with the positive direction 
of y-axis, see Fig. 3 
included angle of the tangent of the deformed strip surface at 0 with the positive direction of x-axis, 
see Fig. 3 
curvature of the strip 

cantilever beam 
elastic foundation 
elastic limit 
normal direction 
punch 
tangential direction 
central point 
contact-off point 

* On leave from Shanghai Jiao Tong University, Department of Mechanical Engineering. 
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1. INTRODUCTION 

Stamping a thin strip on an elastic foundation by a rigid indenter is a mechanics problem 
commonly encountered in various engineering fields and has been studied extensively for 
some decades. However, the topic is still challenging because it poses a three-body contact 
problem involving the determination of the interface stress distributions between the strip 
and punch, and the strip and elastic foundation. The deformation of the system involves 
strong non-linearity associated with the interaction of the membrane force and bending 
moment. 

A number of parametric studies have been carried out to understand the combined 
effect of plate and foundation properties through the modelling of plate deformation 
(Geiger, 1991; Low, 1981; Neumeister, 1992; Ratwani, 1973; Sankar, 1983; Ye, 1994; 
Zhang, 1995) and to provide a refined analysis of elastic foundation (Dempsey, 1991 ; Fan, 
1994; Razaqpur and Shan, 1991; Girija, 1991). Nevertheless, the solution has not been 
very satisfactory because of the following problems : 

(1) If an analytical approach is used, the distributions of the interface contact stresses 
are assumed a priori (e.g., Zhang, 1995), which limits the applicability of the solutions in 
terms of the indenter profiles, the ratio of the thickness of strip to punch radius, and the 
variation of the material properties of the strip and elastic foundation. 

(2) A pure numerical analysis (e.g., Geiger, 1991) needs a considerable computational 
effort for the study of each specific case. 

Accordingly, the development of a practical mechanics model and a corresponding 
solution method is of great importance. This paper proposes a new mechanics model to 
study the deformation mechanisms of a thin strip stamped by a rigid elliptical punch on an 
elastic foundation. Based on this, a semi-analytical method is generated to calculate the 
interface forces. 

2. THE MECHANICS MODEL 

Consider the stamping of a thin strip (thickness : h) on an elastic foundation by a rigid 
ellipse-based cylindrical punch (half lengths of the minor and major axes: a, b). The 
deformation of the strip is in plane stress and is symmetrical to its central line, as shown in 
Fig. 1. The contact zones and interface stresses between the punch and strip and the strip 
and foundation are unknown in advance, which are functions of the punch stroke in the 
stamping process. Because of the symmetry of deformation, however, we can study half of 
the strip only. In order to analyse the problem properly, let us divide the strip into three 
parts according to its contact with the punch and elastic foundation (Fig. 2(a)) : (1) the 
central part A'A, where the strip is in perfect contact with both the punch and foundation 
surfaces, (2) the transition part A C, where the strip is in perfect contact with the foundation 
but has no contact with the punch, and (3) the free part CD, where no contact takes place 
with either the punch or foundation. 

F 

. b 1 b ,,punch 
plate k ] 

\ ' Q 2 J  

~ Elastic foundation l 

Fig. 1. Stamping a strip on an elastic foundation. 
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Fig. 2. The mechanics model. 
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The curvature of the central part is a known function which is identical to that of the 
punch surface. The contact stresses on the strip of this part are the normal contact stresses 
between the strip and punch, q,p and qtp, and the normal and tangential ones between the 
strip and elastic foundation, q,a and q,d. However, qtp is negligible compared with q,d" Thus, 
we will ignore it in the following analysis, see Fig. 2(b). 

The transition part can be modelled as a cantilever beam subjected to both normal 
and tangential stresses, q,a and q,d, due to the interaction between the strip and foundation, 
see Fig. 2(c). The end A of this part is the contact-off point between the punch and strip, 
and end C is the contact-off point between the strip and elastic foundation. The boundary 
conditions of the cantilever must be specified to guarantee the continuity of stresses and 
deformation across these two ends, i.e., 

(a) The bending moment, membrane and shear force are zero at C. 
(b) The deflection and its slope, bending moment and membrane force are equal to 

those of the central part at A. 

The free part of the strip, CD, does not deform during stamping. Its displacement 
relies on the deflection and deflection slope at end C, and can be calculated easily when the 
solution to A C  is obtained. Hence, we will ignore this part in the following analysis. 

To simplify the calculation of the contact stresses, we assume that the normal reaction 
of the elastic foundation follows the Winkler's hypotheses, and that the tangential contact 
stress between the strip and foundation is proportional to the normal stress, i.e., qtd = #q,,a, 
where/~ is the friction coefficient. In the next section, we will first obtain the analytical 
solutions to parts A ' A  and AC,  and then calculate stresses using a numerical scheme in 
conjunction with the compatibility conditions of deformation between the two parts. 
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Fig. 3. The elliptical punch. 
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3. SOLUTIONS 

3.1. Mathematical description of the mechanics model 
The equations of strip bending of large deflection can be expressed as (Yu and Zhang, 

1996) 

dX d Y dq~ M 
dS - cos{p, d-~ = sinq~, d S -  E . I -  x' (1) 

where X and Y are Cartesian coordinates, q~ is the included angle of the tangent of the 
deformed strip surface at 0 with the positive direction of X-axis (Fig. 3), dS is the length of 
an infinitesimal strip element (Fig. 4), E~ is Young's modulus of the strip material, I is the 
second moment of area per unit width of the strip cross section, x is the curvature, and M 
is the bending moment. The equilibrium equation of the strip with large deflection can be 
written as 

"dT 
d~ +N+RQ, =0, 

dN 
~-~- T+RQ. = 0 ,  

dM 
~-~ - R N  = 0, 

(2) 

where T is the membrane force, N is the shear force, Q, and Q, are normal and tangential 
stresses, ~b is the included angle of the external normal of the deformed strip surface at 0 
with the positive direction of the Y-axis, and R is the curvature radius of strip, see Figs 3 
and 4. According to the assumption of Winkler's foundation, we have 

N 

M+dM R I 
~ T+dT 

dS N+dN 
Fig. 4. A strip element in equilibrium. 
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(3) 

where k d is the stiffness coefficient of the elastic foundation,/~ is the friction coefficient 
between the strip and elastic foundation, Wis the surface deflection of the foundation, and 
Q,a and Qtd are the normal and tangential contact stresses between the strip and foundation. 
Furthermore, the compatibility conditions between parts A'A and A C  can be expressed as 

M(O?) = M(O~), T(O?) = T(O~), W(O?) = W(O~), g0(0i-) = tp(0+), (4) 

where 01 is the polar coordinate at the contact-off section A, with the superscripts ' - '  and 
' + '  indicating parts A'A and AC, respectively. The compatibility conditions state that the 
deflection of the strip is a continuous function of C 2. Equations (1)-(4) can also be written 
in non-dimensional forms to generalise the solutions : 

dx dy dip 1 
ds cos~o, ~ sinq~, ~-s ? ] l m = r ,  (5) 

dt 
~-~ +n+y2rq, = O, 

dn 
~-~ - t + y2rq~ = O, 

dm 
--;-7, -6y2rn = O, aq~ 

(6) 

q.d = q2W, q,a = #?]2W, (7) 

w(O-~) = w(O-~), q~(O{) = tp(O-~), re(O-{) = m(O~), t(O{) = t(O+), (81) 

where 

X Y R dS W 
x -  , y -  , r -  , d s -  , w = - - ,  (9) 

E~ 1 2 Me = g~yh , N~ = ayh, Te = ayh ke  - 
2a' 

M N T a 
m Me n Ne, t = ' q - t r y  (lO) 

b x / ~  2 t r y x / ~  E e w / a  
Y l  = - - ,  Y 2  = , ?]1 - -  , ?]2 = , a h Es h 2% v/~  

a2 Ea hbEs bhE Es h2 bE Es 
= , _ , _ , _ , ( 1 1 )  

q3 2bhay ?]4 2a2 ay ?]5 4a3 try ?]6 24a4try 

where try is the yield stress and Ed is Young's modulus of  the elastic foundation. 

3.2. Solution to part A 'A 
The deformation of the strip in this zone follows exactly the geometrical profile of the 

punch. Therefore, using the geometrical equation of an ellipse, the deflection function of 
the strip can be written as (see Fig. 4) 
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x = V~l  sin0, 
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1 1 : 2 2 
y = ~ [ c o s O - 1 ] ,  r -  -/~.3x/(sin O+Tlcos20) 3, (12) 

w=(wr+cos0 - -1 ) ,  wr=(1--cos01+Wl) ,  (13) 

where w, is the punch displacement at the punch centre, wl is the displacement at the 
contact-off point A, see Fig. 2(a). The bending moment and shear force in the strip can 
easily be determined when eqn (12) is substituted into eqns (5) and (6)" 

re(O) - r13 m(O? ) = ~/3 (14) 
~/(sin 2 0+?12 cos 2 0) 3' ~/(sin 2 01 +y2 cos 2 01)3' 

drn dO 1 - r /4 (1 -y~)cos0s in0  
n(O) = d--0-d0 672r - (sin 2 0+y~ cos 2 0) 3 ' (15) 

where the relationship between 0 and q5 is shown in Section A. 1 of the Appendix. Using 
eqns (7) and (13), the contact stresses between the strip and elastic foundation can be 
expressed as 

q.d = rl2(Wl--cosOI +cosO), q~d = ]~2(WI --COSOI -{-cosO). (16) 

Accordingly, the membrane force of the strip and the normal contact stress between the 
punch and strip are 

and 

t(O) = t o -  n - d ~ a ¢ - j 0  72rq,ad~ 

' ] 
= to+rl5 (sinZO+y~cosZO)3 - q 6 # [ ( w ~ - c o s G ) G l + G 2 ]  (17) 

dn d o l l  
q, = q ,p-q ,a ,  q,p = qna+ t -  (18) 

dO d~b]Tzr ' 

when eqns (15) and (16) are substituted into eqn (6). In the above expressions, 

;: G I =  in2 ~+V~z cos2 ¢)d~, G 2 =  cos ~x/(sin: ¢ + r~z cos2 ~) d~, (19) 

d n  

dO 
- -  ~ - ~/4 (1 - V~z) c°s 20(sin2 0 + 7~ cos 02) - 6(1 - y2) cos 2 0 sin 2 0 (20) 

(sin 2 0+712 cos 2 0) 4 

and to is the dimensionless membrane force at the central section A' of the strip. The 
calculation of GI and G2 above is shown in Section A.4.1 of the Appendix. 

3.3. Solution to part A C  
As shown in Fig 2(a) and (c), the distributed load of this part is related to both the 

displacement at the contact-off section A and the deformation of the beam itself. Hence, 
according to eqn (7), the loads on the beam can be expressed as 
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(21) 

where tkl is the ~b value at section A, w' is the deflection of cantilever beam which is in the 
same direction of punch normal at point A, as shown Fig. 2(a), L is the length of part AC 
when ignoring its deformation and L' is its length after deformation. In eqn (21), the first 
term in the square brackets is the surface deflection of the foundation when part AC is 
rigid, and the second term is caused by the deflection of AC. Consequently, the bending 
moment and membrane force can be expressed as 

rn=f~'J~'q ,  cdCd~=fz ' f~ '~12[wl(1-~)-w'cos(91]d~bd~,  

m(O~)=f : ' J ; '~2[Wl(1-~) -w 'cosdp l ]d f fd¢ ,  (22) 

where 

t = f ~ ' q c t d ¢ = f z ' # q z I ~ ( L - O - w ' c o s c ~ l ] d ¢ ,  

t(O-~)=f~'l tr12I~(L-~)-w'cos(al]d~, (23) 

w' = f'/L' sin tp d~. (24) 
Jz cos tp 

3.4. Iteration technique 
w I and to in the solutions of parts A'A and A C must be determined by the compatibility 

conditions. To simplify the procedure, we start the iteration by ignoring the deformation 
of part AC. A simple algorithm can be specified as follows: 

(i) give contact-off angle 01, 
(ii) calculate the internal forces of  part AC by ignoring its deformation (see Section A.3 of 
the Appendix for further details), i.e., 

:) w 
= - , q,c = #q,c, L - sin~bl (25) 

m =  q , c d C d ~ -  ~ 1 - Z  , m( O-~ ) - - -  sin 2~bl (26) 

f L /zr/2 w l L [ z \2 /zr/2 w 2 (27) 
t= q,cd¢-  ~ ~ I - z ) ,  t(0~+)-2sinq~ 1, 

(iii) determine ,,,(o),vl ,,o'(°) with the compatibility conditions by eqns (14), (15), (26) and (27) 
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: ~ 6r/37~ sin 201 °) 

I 1 
t~oo ) _ #q2w~ 1 _ _ ] + r l 6 1 t [ ( w r _ c o s O j ) G l _ G 2 ] ,  

2sin~b~ r/5 y~6 (sin20~ +7~cos20~)3j 

(iv) calculate the deflection of part A C ,  see Section A.2 of the Appendix, 
(v) determine instant contact-off point C where a(0 = 0, and then calculate L', ~ n c  

(vi) correct the internal forces of part A C, m and t, using 

, , , .=~ . ,  w~ 1 -  - (w')  ~° , r " " l e n ,  

(28) 

(29) 

(30) 

which gives rise to 

(vii) calculate w] ~+ 1~ using the compatibility conditions, eqns (14), (15) and (33); here an 
internal iteration must be conducted until the compatibility conditions are all satisfied, 
(viii) check the convergence according to criterion 

w~ ' + ' ,  - w~', 
w]'--' ] = ~' (32) 

where e is a small positive constant ; if it is satisfied, do the next step, otherwise, return to 
step (iv), 
(ix) calculate qmr qnd, qtd, t, rl and m. 

4. A NUMERICAL EXAMPLE 

The numerical results presented in this section were calculated on a 486DX33 PC using 
the above algorithm. A complete analysis needs 10 minutes of computational time. Unless 
particularly specified, the material properties and geometrical dimensions used are 
Es/Ea = 100, a/h = 50, Es/ay = 875, h = 1.0 and ay = 240 (MPa). 

The distribution of the normal contact stress between the strip and punch is shown in 
Fig. 5, which demonstrates that the maximum stress moves from the centre towards the 
edge of the contact zone as ~1 increased. It is not difficult to understand that when 7~ 
increases the surface of the punch becomes more flat, and therefore a stress peak near the 
edge of the contact zone must appear. This is similar to the case of  stamping with a fiat 
punch. However, when 7~ = 1 (i.e., the punch profile is circular), the maximum contact 
stress will always be at the strip centre, as shown in Fig. 6. 

Figure 7 compares the distributions of  the normal contact stress between the punch 
and strip and that between the strip and elastic foundation. It is clear that the contact 
length between the punch and strip, c, and that between the strip and foundation, c', are 
different and vary during stamping. When the contact angle 0 increases, c' approaches c. 
However, as the punch is rigid, c' is always larger than c. The softer the foundation, the 
larger the ratio of c' to c. 
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Fig. 5. The variation of the normal contact stresses between the punch and strip (01 = 90°). 
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Fig. 6. The normal contact stresses between the punch and strip when Yl = 1. 
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Fig. 8. The difference between stamping with and without a foundation (Es/Eu = 1000, a/h = 10). 

In a blank stamping process*, a central gap appears between the punch and strip 
surfaces when the punch displacement reaches a certain value (Sankar, 1983; Yu and 
Zhang, 1996). Therefore, the contact force in this central zone must be zero. However, our 
extensive analyses indicate that for the stamping with an elastic foundation, such central 
separation does not happen, even when the foundation is very soft. Figure 8 is an example 
that demonstrates clearly the difference of contact stress distributions between these stam- 
ping processes. 

Corresponding to the variation of the contact stresses, the internal forces of the strip, 
m and n, vary significantly with the elliptical ratio Yl. When ])1 = 1 ,  the bending moment of 
the strip in part A'A is constant and the shear force is zero. This indicates a pure bending. 
When ~1 < 1, the maximum bending moment is always at the strip centre. When ?l > l, 
however, the maximum bending moment is always at the edge of part A'A. On the other 
hand, the general feature of the membrane force is that its peak moves from the centre 
towards the edge of the contact region with increasing Yl- Recalling the effect of 71 on the 
distribution of contact stresses discussed before, it is clear that yl is one of the most 
important geometrical parameters in stamping. 

5. CONCLUSIONS 

(1) The main advantages of the present model are that it relies on fewer assumptions, 
is with clear mechanics meaning throughout the analysis, and makes the calculation more 
efficient. 

(2) The model and method developed can be extended easily to solve the problems of 
stamping with indenters of different geometries. 
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APPENDIX 

A.1. The relationship between 0 and c~ 
The tangent and normal of an ellipse can be expressed as 

Yl = - -Xtan0+C~ (tangent), 
71 

Y2 = 7~ x cot 0 + C 2 (normal). (A.l) 

Therefore, according to Fig. 3, 

t an  0 d~b 71 
tan  q~ = , 

71 dO sin ~ 0 + 72 cos2 0 

72 cos2 0 dO (sin 2 0 + 72 cos2 0) 
(A.2) 

c°s2~b = sin20+7~cos20 ' d~b ~l 

A.2. Some detailed formula derivation for part AC 
According to the basic equations of plate bending subjected to large deflection, the deflection of part A C can 

be expressed as 

w' = I L' sin ¢p d~ J~ ~ , (A.3) 

where L' is the length of part AC, see Fig. 2(a) and (c). In order to solve eqn (A.3), it is necessary to find the 
relationship between the axial coordinate z and the slope of the deformed plate surface. Generally, the bending 
moment can be expressed as 

m = If" f f ' r h lWl (1 -  ~ ) - w '  cosdplld@d¢. (A.4) 

Substituting (A.4) into the geometrical equation of plate bending gives rise to 

L' L' 1 dcp_ thin rh~h ~ f Fw,: l - -e~--w "cosq~, d~bd¢. (A.5) 
d~ cosq, cosq, J~ J,L k L/ 

Therefore, 

sinq~ ~/,r/2 I f ' r e  [Wl( ' ~ ) -w 'c°s~ l ld~ /d~d~"  (A.6) 

Equations (A.3) and (A.6) are for analysing the deflection of part AC. Because of the non-linearity involved, 
they should be solved by an iteration method using the following formulae : 
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(W, ) ( ,+  1) = I | sin ~o ¢° de, 
z COS (p(O 

I 1 w ~ i )  , , (i) 

(A.7) 

(A.8) 

A.3. The calculation o f  deflection ignoriny the deformation of  part AC 
When the effect of deformation of cantilever beam is ignored, according to eqns (5) and (25), 

d~o_ thin _ q2~hWl (L_z)3 ' 
dz cos q~ 6L cos q~ 

s in~o=2 1 -  1 -  , ) . = s i n % = ~  ~, 

where ~Pc is the slope of the cantilever beam at end C, see Fig. 2(c). Let 

= 1 - ~  sin~o 
L 4 "  

then 

Lcos ¢p dq~ 
d z -  

4x~2(2 - sin ¢p) 3 

The substitution of eqn (A. 11) into eqn (A.3) immediately leads to 

= fL sin ~o = I ~, L sin (o dq~ 
w' J: cos ~o dx J~ 4 x f ~ p ) ,  - LG~, 

where 

f f ,  sin ~k d~b 
G~ = 4 ~  

is an elliptical integration. 

A.4. The elliptical inteyration 

A.4.1. The calculation of  Gi and G2 in eqn (19). Ifyi >i 1, then 

G, = rejo,(1 - ~  k2 sin 2 ~b -½k4 sin'& -~6k 6 sin6~b I ~  k8 sinS~b) d~b 

= g~ 0+92 sin 20+ (#3 -g6 )  sin320 + (Y4 -gT)  sin 40 -95  sin 80, 

t'0 
G2 = Jo cos0(1-½k 2 sin 2 ~b-~k 4 sin4~b I ~ k6 sin6 ~b sinS~b) d~b 

=(sinO_~k2sin30_~ok 4 . s l 6 . 7 s s sin O--T~k sin O - ~ k  sing0), 

where 

k 2 3k 4 5k 6 175kS 1 1[ 2 k4 k6 5kS\ 
91 = 1 4 64 256 T - ~ f  g2 = ~ k  + - 4 - + f f + - ~ - ) ,  

1 ( 4 3k6 35k8~ 
1 (k6+~kS)' = 2 ~  -4 -  + - ~ - ) '  g3 = 3 ~  g4 k + 

5k 8 k 6 5k 8 1 
131072' g 6 = l ~ ,  g 7 = 8 ~ ' ~ ,  k 2 =  1 - - - .  

(A.9) 

(A.10) 

(A.11) 

(A.12) 

(A.13) 

(A. 14) 

(A.15) 

gs = - -  (A. 16) 
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IfT~ < 1, then 

where 

G, = (1 - - / k 2  COS 2 ~ / - - l k 4  C O S 4 ~ / - ] k  6 COS61]/--1+sk $ C088~//) d~/ 

= (g~ 0--y2 sin 20 +93 sin320--g4 sin 40-g5 sin 80), 

G2 = f~ cos ~,(1-½k 2 cos 2 ~b - ~ k '  cos4~k -~6 k6 cos6~ - ~ k '  cosa~k) d~O 

= hi sinO-h2 sin30-h3 sinS0-h4 sinV0-hs sing0, 

( k2 k" (k2 k" 3k° 5ks] 
h , =  1 2 8 16 l ~ J '  h 2 = - 2 - + 4 - + ~ - +  32] '  

(8k 4 + 12k 6 + 75k 8 ) (2k 6 + 5k s) 5k s 
h 3 -  2560 h4 224 , h5 = 1 - ~ '  k2 = 1 - 7 2 '  

A.4.2. The calculation of G2 in (A.13). Letting 

G3 can be rewritten as 

v 4 = 2 - s i n  ~o, d o  = - 4 1 ;  3 dv  , 0 ~< v ~ v~ = x ~ ,  

, /1  - ( ~ -  v 'y  

G3 = x~ 1 _(2_~4)2 • 

Using the Taylor series expansion, it becomes 

~ V ( / ~ _ _ ~ 4 ) . .  I--- - - ' ' 2  3 4 4 15 4 6 105 4 8 
G 3 =J.'jo x ~ L I + i ( A - -  ¢ ) +g(2--¢ ) +~(2--~ ) +3~(2--~ ) + . . . ]d~ 

[ f f l ~  / g 2 2 3  3 5 15 7 . .  = +~g33-  + ~ g 4 2  + "], 

where 

~( 9t = l - u 4 )  du, 

g4 = 1 - -  U4) 7 du, 

g2 = f i (  1 - - U 4 )  3 du, 

u =  l -  . 

Y3 = fi'( 1 --u4) 5 du, 

(A. 17) 

(A.18) 

(A.19) 

(A.20) 

(A.21) 

(A.22) 

(A.23) 


