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Abstract-This paper deals with the wrinkling and buckling of elastic plates subjected to in-plane and 
transverse. external forces. With the aid of a newly developed dynamic relaxation method, the well-known 
dynamic criterion of stability was used to predict the bifurcation point. Some typical components in 
engineering practice (i.e. annular, circular and rectangular plates) were investigated in detail. The 
reliability of the method for the analyses of post-wrinkling and post-buckling was demonstrated. Based 
on the analytical studies performed, approximate formulas for determining the critical load and number 
of waves in the wrinkling mode were obtained. It found that the initial elastic wrinkling mode of plates 
subjected to bending was different from that of plastic wrinkling. 0 1997 Elsevier Science Ltd. 

NOTATION 

length of a rectangular plate 
width of the rectangular plate 
diagonal damping matrix ([c,,]) 
flexural rigidity of a plate, Eh3/12(1 - v’) 
Young’s modulus 
vector of generahsed forces of a discrete system 
shear modulus 
thickness of a plate 
stiffness matrix of the discrete system 
q%D 
qb’/n2D 
diagonal mass matrix of the discrete system ([&I) 
bending or twisting moment 
number of waves of a wrinkling mode 
membrane force 
total node number of the discrete system 
vector of internal forces of the discrete system 
uniformly distributed in-plane load 
vector of residual forces of the discrete system 
radius of a circular plate 
inner radius of the annular plate 
outer radius of the annular plate 
displacement components in x, y and z directions, 
respectively 
vector of generalised solution of the discrete system 
vectors of fictitious velocity and acceleration of the 
discrete system, respectively 
direction normal to the mid-plane of the plate 

Greek letters 

B R,Ro 

l(. .) 
shear strain 
a small increment of quantity (. .) 

z 
normal strain 
critical node damping factor 

K curvature of the plate 

8 Author to whom correspondence should be addressed. 

5 1-B 
IJ normal stress 
5 increment of fictitious time 
r, shear stress component 
v Poisson’s ratio 

Superscripts and subscripts 

;. 
node i 
indication of three perpendicular coincident with 
displacement tl, v and w, respectively 

” the nth iteration step 
x, .r x and y directions, respectively 
r, 0 r and 0 directions, respectively 

1. INTRODUCTION 

Wrinkling and buckling are the common failure 
modes of many plate and shell structures in 
engineering. The prediction or detection of the onset 
of wrinkling and buckling and the reliable analyses 
of post-wrinkling and post-buckling have long been 
the important topics of research for engineers and 
scientists. It is understood that the onset of 
wrinkling/buckling is the bifurcation point on the 
loading path of a structure from the primary 
equilibrium path to the secondary equilibrium path. 
Correspondingly, there are three equivalent criteria 
for predicting the bifurcation of conservative systems: 
static, energy and dynamic criteria. However, the 
former two criteria are not valid for non-conservative 
problems and the application of the dynamic 
criterion is difficult. Hence, the development of an 
appropriate algorithm for bifurcation prediction 
when using the dynamic criterion is of practical 
importance. 
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Based on their newly developed numerical method 
of modified adaptive dynamic relaxation (maDR), 
Zhang et al. [ 1] and Zhang and Yu [2], embodied the 
dynamic criterion of stability within their algorithm, 
and investigated the plastic wrinkling of circular 
plates stamped by rigid punches. Their approach 
successfully overcomes the difficulties of applying 
this important stability criterion to engineering 
problems. However, because of the lower conver- 
gence rate of the DR type method, the computational 
time for performing a wrinkling analysis is still 
considerable. 

The purpose of this paper is two-fold. The first is 
to combine a more powerful dynamic relaxation 
method developed by Zhang and his co-workers [lo] 
with the dynamic criterion to offer a more efficient 
analysis of wrinkling/buckling and post-wrinkling/ 
buckling. The second is to gain more knowledge of 
wrinkling and buckling through the detailed analysis 
of some typical engineering components by this 
unique approach. 

2. DETECTION OF BIFURCATION POINT 

As pointed out by Zhang et al. [1], the main 
difficulties in the application of the dynamic criterion 
of stability are that a static mechanics system must be 
treated as a dynamic one (an initial value problem) 
and that the stability of the system must be monitored 
until time t approaches to infinity when the system is 
subjected to any kind of initial disturbances. 
Fortunately, these difficulties can be overcome 
naturally when the dynamic relaxation method is 
used [l-2]. This type of method searches for static 
solutions of an equilibrium system by making use of 
the dynamic transient analysis (see the appendix and 
Refs [l-2] for details). The initial dynamic disturb- 

Load t 

,,, II: unstable 
.*. 

IE stable 

Displacement 

Figure 1 shows the method of determining the 
bifurcation point by the dynamic relaxation method, 
where curve I is the primary equilibrium path of a 
mechanics system, curve III the secondary equi- 
librium path after bifurcation and curve II is an 
unstable equilibrium path. When the state of the 
system is on curve I, say at point A, the fictitious 
vibration of the dynamic relaxation is stable. 
However, if the deformation state of the system goes 
beyond the bifurcation point B (e.g. at point C), the 
vibration becomes unstable, and a jump from C to D 
occurs, and then a stable vibration around state point 
D starts. Once two points like D are detected, an 
approximate bifurcation point B* can be obtained by 
a linear extrapolation. Further deformation of the 
system moves the corresponding state along curve III, 
which represents the post-wrinkling/buckling states 
of the system. 

Fig. 1. Bifurcation of equilibrium state of a mechanical To perform the bifurcation prediction illustrated 
system. above, one can use different methods or algorithms 

9 

casel:S-SIC-C 

case 2: Cl-Cl/C-C 

case 3: S-SIT-F 

case 4: S-FTT-F 

Fig. 2. Loading and boundary conditions of annular plates: 
(a) S-S/C-C and Cl-Cl/C-C; (b) S-S/T-F and S-F/T-F. 

antes generated by the disequilibrium internal forces 
are arbitrary and the iteration for obtaining the 
correct static solution is with respect to time. 
Therefore, the stability of the system can be observed 
in a practical time interval. 
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Fig. 3. Wrinkling load parameters: (a) for S-S/C-C and Cl-Cl/C-C; (b) for S-S/T-F and S-F/T-F. 

depending on the problem under review. The 
following proposed method is extremely suitable for 
the problems to be analysed in this paper. In its 
pre-wrinkling/buckling states (states on the primary 
equilibrium path), the slope of deflection at any point 
in a plate is zerot. If a non-zero slope at a point is 
detected at a certam load level, it corresponds to a 

t For a circular plate under axisymmetric transverse 
bending, the circumferential deflection slope at any point in 
the pre-wrinkling stale is always zero. 

post-wrinkling/buckling state on the secondary 
equilibrium path III. If two such points are obtained, 
say D and E in Fig. 1, the approximate bifurcation 
point B* from path I to III can be determined simply 
by an extrapolation from these two points. The 
accuracy of B* obtained, compared with the real 
bifurcation point B, depends on the relative state 
distance of D and E from B. To get a sufficiently 
accurate prediction, an iteration is usually needed to 
find better post-wrinkling/buckling state points closer 
to B. 
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Fig. 4. Wrinkling mode of S-S/T-F as @ = 0.5: (a) in z-8 plane at r = (R, + &)/2; (b) in z-r plane; (c) 
in 3-D form. 
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Fig. 5. Wrinlkling mode of S-F/T-F as B = 0.2: (a) in z4 plane at r = Ro; (b) in z-r plane; (c) in 3-D 
form. 
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Table 1. Number of waves in different annular plates 

E 0.3 0.4 0.5 0.6 0.7 0.8 

m(case 1) 0 0 0 0 0 0 
m(case 2) 7 5 4 3 2 2 
m(case 3) 9 7 6 5 4 3 
m(case 4) 4 3 3 2 2 2 

3. CASE STUDIES AND DISCUSSION 

Three problems have been analysed herein to 
assess the method outlined in the preceding section. 
These are the elastic wrinkling/buckling of an 
annular plate subjected to an in-plane load, a 
circular plate under transverse ring load and a 
rectangular plate compressed by in-plane loads. The 
wrinkling/buckling of annular plates under various 
loading conditions has been investigated by many 
researchers. Yamaki and Sendai [3] studied the 
buckling of a thin annular plate under uniform 
compressive edge forces using an analytical method. 
Majima and Hayashi [4] analysed an annular plate 
subjected to a non-uniform in-plane stress by the 
Galerkin method. Yu and Johnson [S] studied the 
problem in relation to the deep-drawing process by 
means of the energy method. Yu and Zhang [6] 
investigated the elastic wrinkling of an annular plate 
using a hybrid approach which combined the 
Kantorovich and Galerkin methods. A common 
characteristic of all these studies is that either a 
static or energy criterion was used for predicting the 
bifurcation. The wrinkling of a circular plate 
subjected to a transverse ring load has been analysed 
by Zhang et al. [l]. However, in seeking for a 
bifurcation point, they monitored the incremental 
displacement in the circumferential direction that is 
more difficult and less efficient compared with the 
method proposed in the last section. Yu and Stronge 
analysed the wrinkling of a circular elastic plate 
stamped by a spherical punch by energy method [7]. 
Although the wrinkling/buckling behavior of annu- 
lar and rectangular plates have received considerable 
attention, a further analysis of the problem does 
serve a useful purpose. The results that have been 
gathered to date provides a useful yardstick against 
which to judge the applicability and reliability of the 
proposed algorithm for bifurcation analysis. In all 
the calculations below, the materials constants used 
are Young’s modulus E = 206 GPa and Poisson’s 
ratio v = 0.3. 

Table 2. Parameters to calculate the 
number of waves 

A A 

case 1 - case 2 2:9 0.96 
case 3 2.77 0.03 
case 4 0.45 1.72 

3.1. Elastic wrinkling of annular plates 

Both loading and boundary conditions can alter 
the deformation mechanisms of an annular plate. 
Therefore, to investigate the effects of these factors, 
the following four cases are studied: 

Case 1. Both the inner and outer edges are simply 
supported and subjected to in-plane uniform 
compressive forces, S-S/C-C, Fig. 2(a). 

Case 2. Both edges are clamped and subjected to 
in-plane uniform compressive forces, C 1 -Cl /C-C, 
Fig. 2(a). 

Case 3. Both edges are simply supported. The plate 
is subjected to in-plane tensile force on its inner edge, 
but its outer edge is traction free, S-S/T-F, Fig. 2(b). 

Case 4. The inner edge is simply supported and the 
outer edge is free. The plate is under an in-plane 
tensile force on its inner edge only, S-F/T-F, 
Fig. 2(b). 

The incremental form of the equilibrium equations 
for an annular plate are 

a6N, 1 a6Nrr 
ar+Tae+(“N,-“No)=O, 

a 6N,o la6No 2 
ar+rdB + ; (SNfi) = 0, 

+6N,$+- ; $$j Wrs + SNre) 

(No+bNe)=O, (1) 
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Table 3. Coefficients to determine the critical loads 

a2 a3 a4 a5 

567 

case 1 71.2 -83.9 47.6 -8.2 4.6 
case 2 144.7 -411.2 451.8 - 240.0 61.5 
case 3 105,875.O - 178,855.0 11,1045.0 -30,472.7 3423.3 
case 4 1439.4 - 3635.4 3394.8 - 1439.3 273.4 

where 

h/2 

= s (do,, Gtrs, 6~0, I an,,, Z&J@, z&fi) dz, (2) 
-h,Z 

are the incremental membrane forces, bending and 
twisting moments, respectively. The geometrical 
relations between the incremental strains and 
displacements are 

where 

ck,= -q$, 

gK 

0 
= _ iaaw bLa*6w ( r ar r2882 ’ > 

6K = -1 a2*w I adw 
r6 _-_+_- 

r dr &I r2 de 

(3) 

(4) 

t To compare the present results to those of Majima and 
Hayashi [4], the wrinkling load parameter was changed from ~_~ ~.~ 

where A and A are constants (see Table 2) that best 
fitted the results in Table 1. The critical wrinkling 
loads of different cases have different variation trends 
when loading and boundary conditions differ. 
However, a fourth-order polynomial of /? can 
properly describe the variation and provide an 
empirical prediction. If the wrinkling load parameter 
k is expressed as 

qR:D to q&D. k = a184 + a$ + a3p2 + a# + as, 

The results obtained are shown in Fig. 3 
and compared with those of Yamaki and 
Sendai [3], Majima and Hayashi [4]t and Yu 
and Zhang [6]. They are in very good agreement. 
This demonstrates once again that the dynamic, 
energy and static criteria are equivalent for 
conservative problems. 

The variation of the wrinkling load parameter with 
the ratio of inner radius to outer radius of the plate, 
/?, for cases 1 and 2 are demonstrated in Fig. 3(a). The 
required load to initiate wrinkling for case 1 is less 
than that for case 2, as expected. For both cases, the 
wrinkling load parameter, k, increases with increas- 
ing ratio /? (R. = constant). In other words, the 
wrinkle resistance of an annular plate with larger 
blank width is higher. 

Figure 3(b) presents the results of the annular 
plates of cases 3 and 4. The required load to initiate 
the wrinkling of S-S/T-F is much higher compared 
with S-F/T-F. By contrast to cases 1 and 2, the 
wrinkling load parameter k of these two cases 
decreases as b increases, indicating that the wrinkle 
resistance of an annular plate with larger blank width 
is lower. Clearly, boundary and loading conditions 
alter the stress distribution in the plates and thus the 
wrinkling behaviour. 

The wrinkling modes for cases 3 (p = 0.5) and 4 
(/I = 0.2) are shown in Figs 4 and 5. Table 1 lists the 
number of waves, m, of all cases studied when 
5 = 1 - /3 varies. Based on these, empirical formulas 
for determining the critical load and the number of 
waves of the wrinkling mode can be obtained, which 
may prove to be of practical worth. It is obvious 
that when 5 increases, i.e. when the width of the 
plate increases, the number of waves decrease. 
Therefore, the relationship between m and 5 can be 
expressed by 

rn=!+A, 
r 

(5) 

(6) 
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the coefficients cr,(i = 1,...,5) can be calculated easily, non-linear profile of the radial mode has a significant 
as listed in Table 3. effect on the critical load prediction when using an 

Figure 5(b) shows the radial profile of the plate analytical method, though its non-linearity is not 
S-F/T-F (case 4) in the post-wrinkling stage. The strong [6]. 
radial wrinkling mode of the plate is a nonlinear Now let us look at the wrinkle development of the 
function of r. This is consistent with the solution annular plates in their post-wrinkling stages. The 
based on a hybrid approach of the Kantorovich and feature of the wrinkle growth for S-S/T-F is 
Galerkin methods [7]. It has been found that the demonstrated in Fig. 6 with /I = 0.4 and 0.6, where 

k 
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Fig. 6. Wrinkle grwoth in S-S/T-F: (a) /3 = 0.4; (b) = 0.6. 
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i d 

I i 

I 

Fig. 7. A simply-supported circular plate subjected to a ring load. 

w., is the average absolute value of the wrinkle 
heights. For convenience, we indicate in Fig. 6 the 
pre-wrinkling stages as RO, the first post-wrinkling 
stage Rl and so on. When a plate is first wrinkled, 
it enters the deformation stage Rl. With increasing 
the external load, a sudden change of wrinkling mode 
occurs when the load reaches to a certain value and 
the plate deformation is in its second post-wrinkling 
stage R2. We may call this load the secondary critical 
load. In other words, the first post-wrinkling stage 
becomes unstable when the secondary critical load is 
reached. Thus a new bifurcation takes place. 
Similarly, there exists a third critical load between the 
post-wrinkling stages R2 and R3. A further 
increment of the external load may bring about the 
fourth post-wrinkling stage and so forth. For the 
present annular plate, the number of waves for 
/I = 0.4 and 0.6 in stages Rl, R2 and R3 is, 

respectively, (ml, m2, m3) = (5,6,4) and (7,8,6). 
When the wrinkling changes from Rl to R2 w,, 
decreases, but when it happens from R2 to R3 w,,, 
increases. This could be interpreted by the constant 
deformation energy at a critical load. The number of 
waves of the wrinkling mode in R2 is more than that 
in Rl (5-6 when /I = 0.4 and 7-+8 when fi = 0.6), 
but the deformation energy in the plate is a constant 
at the critical load. Hence, w., must reduce from Rl 
to R2. Similarly, w,,, must increase from R2 to R3 
because m3 is less than m2. 

3.2. Elastic wrinkling of a circular plate subjected to 
a ring load 

Wrinkling can also occur in plates subjected to 
transverse bending. Consider a simply supported 
circular plate with a movable periphery subjected to 
a transverse ring load, q, Fig. 7. The edge of the plate 

-r/R=O.85 +r/R=O.93 +-r/R=1 
I 

Fig. 8. The cirumferential wrinkling mode at different radii of the circular plate. 
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-OfI Lo 0.50 olo 0.510 0.140 0.50 oh0 020 0.80 0.~ 1 
r/R 

(4 

(b) 

Fig. 9. The wrinkling mode of the circular plate: (a) in z-r plane; (b) in 3-D form. 

is free to move upward from the support. The plate plate is axisymmetrical, but the circumferential 
is of radius R = 75 mm and thickness h = 1 mm. The compressive stress near the plate periphery 
radius of the ring load is Rd = 32.5 mm. The increases as the deflection proceeds. When this stress 
incremental equations for wrinkling analysis is becomes sufficiently large, the equilibrium configur- 
same as the annular plate, eqns (l)-(4), provided ation of the plate changes from its axisymmetric 
that a term 6q be added to the right hand side state to nonaxisymmetric one. Wrinkling therefore 
of eqn (1~). In the first stage the bending of the occurs. 

0.01 

dw/(rd tI ) 

0.01 

l&O 150.0 2ch.o 
LOad (W 

2! 

e r/R=O& + r/R=033 + r/R=1 
II 

1.0 

Fig. 10. The circumferential slope-load curve at different radii. 
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I 
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I 

all edges simply supported 

Fig. Il. A simply-supported rectangular plate under uni-axial compressive loads. 

Figure 8 shows the circumferential wrinkling mode 
of the plate at different radii from the plate centre. It 
is obvious that the initial elastic wrinkling mode is 
with three circumferential waves which is different 
from that of plastic wrinkling[l]. When wrinkling 
appears, parts of the plate near the edge move 
upwards and generate negative deflections, Fig. 9(a). 
Figure 9(b) illustrates the three-dimensional profile of 
the plate after wrinkling. The variation of l/r(6w/M) 
at three different radial distances, r/R, is shown in the 
Fig. 10 which indicates that the radial peak of the 
wrinkling wave does not occur at the periphery of the 
plate, but at some .point inside it, which is consistent 
with experimental observations [ 1,7, 81. 

3.3. Elastic wrinkling of a rectangular plate 

It is assumed that the rectangular plate is 
simply-supported .and is subjected to a uniform 
compressive force in x-direction, Fig. 11. The 

m-w_ +X 

incremental form of the equilibrium equations for the 
rectangular plate are 

asNv I a 6N,, _ o 

ax ay 9 

asN, I a6NT,_0 
ay ax 1 

a2 6~, + a= 6~, -- 
ax2 ay2 

2 am4, 
axay 

+aN,~+(N,+GN,)~+dN,~ w 
ajw 

+(N,+~N,)~+~sN,,- ax ay 

+2(N,,+6N,,)*=O 1 axay 

3c%o@ 

I 

24,.00 

6.00- 
P 

1 

- Hatik’s result - DXDR results 

Fig. 12. Buckling load parameter. 

(7) 
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0.8 

,0.5 

,o.o 

4.5 
/ 

-1 .o 

8.5 

xla 

(4 

Fig. 13. Buckling mode and variation of 6, (at x = a/2) as a/b = I: (a) in z--x plane at y = b/2; (b) in 
3-D form. 

where 

@N,, 6N,, 6N,, ,6M,, @I, 1 aM\,) 

hi2 

= s (do,, 6a,, bl , z 8ay, z 6a,, z 6r,,) dz. 
-II,* 

fjtp=!z+; !?!g ‘+y& ( > 

(8) 

The relations between the incremental strains and 
displacements are 

awasw atiwabw 
+ZF+ ax ay --3 

&=_!?@ \ ax2 7 

(10) 

where 

(9) 6k =_a26w 
ay F 

a2dw 
6k,,. = ax . 

The results of the present study are compared with 
those of Harik and Ekambarom [9] in Fig. 12, which 
demonstrates the applicability and reliablity of the 
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x/a 
G-4 

(b) 

Fig. 14. Buckling mode and variation of (rl (at x = a/2) as a/b = 3: (a) in z--x plane at y = b/2; (b) in 
3-D form. 

proposed algorithm for analysing structural prob- 
lems. The predicted buckling modes for two different 
ratios of the edge lengths of the plate i.e. a/b = 1 and 
3, are presented in Fllgs 13 and 14. The buckling mode 
is only one wave when a/b = 1, but becomes three 
when a/b = 3 in the direction of Ioading. Figures 
13(a) and 14(a) also exhibit the variation of normal 
stress Q~ in the post-buckling stage. Since the plate is 
subjected to a unidirectional compressive force, all 
nodes have the same normal stress CT, in the 
pre-buckling stage. However, because of the bending 
effect in the post-buckling deformation, CJ, varies. 

4. CONCLUSIONS 

The DXDR method has been combined with the 
dynamic criterion of stability to analyse the elastic 
wrinkling/buckling and post-wrinkling/buckling of 
plate components. An algorithm for predicting 
bifurcation events has been proposed and found to be 
efficient. The applicability and reliability of the 
method has been demonstrated through a detailed 
analysis of a number of practical deformation 
problems. Some approximate relationships to deter- 
mine the number of waves and critical loads of 
annular plates have been presented. The method 
presented herein can be used to study more 

complicated engineering problems associated with 
wrinkling/buckling and post-wrinkling/buckling. 
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APPENDIX 

The DXDR method 

c=2(*Jt 

The initial X0 for iteration is determined by 

In the DXDR method, the governing equations of a static 
system, 

Ro = f(X” + x*), (Ah) 

P(X) = F, 
where X0 and X* indicate, respectively, the initially guessed 

(Al) solution and the neaks of locus of X durine iteration without 
damping. The klements of M are determined by the 

is first replaced by its corresponding dynamic ones, Gerschgorin theorem, i.e. 

Mit + CX + P(X) = F, 
m,4 > t(7”)‘C IkA, (L = u, u, w) (A7) 

I 
where P, X and F are the vectors of internal forces, the 
approximate solution and the external forces of discrete where m,4 is the fictitious mass in direction L on node I’ 
system, respectively. The mass and damping matrices, M (whereas m,, in eqn (A5) is the fictitious sub-mass matrix for 
and C, are fictitiously chosen as diagonal ones so that the each node), and k, is the element of the stiffness matrix of 
static solution could be obtained in minimum number of the system, K, determined by 
pseudo-time steps. All the calculations become explicit when 
the central finite difference scheme is used. The explicit 
formulation for the solution vector X is given by, 

,=ap(x), 
ax 648) 

.g + 1.2 _ 2 - 7T $ - 112 + More detarled 
& (mZ)-‘R:, (A3) in [IO], 

discussions and descriptions can be found 
2 + rni: 


