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A B S T R A C T  

The Brazier effect of  originally straight cylindrical tubes under pure 
elastic-plastic bending is investigated by the deformation theory based on 
some deformation assumptions agreeing with numerous experiments. The 
expressions for bending moment and flattening ratio in terms of  curvature are 
finally obtained 

NOMENCLATURE 

Ao, Af 
E 
K 
M 
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U 
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x, y, z 
~s, /~z 

Original and current flow areas of tube, respectively 
Young's modulus 
Axial curvature of tube 
Bending moment 
Material constant defined by eqn (8) 
Radius of original middle surface of circular tube 
Natural coordinates, as shown in Figs 1 and 2 
Thickness of tube wall 
Strain energy per unit length of tube, defined by eqn (7) 
Normal displacement of middle surface of tube, as shown in 
Fig. 3. 
Cartesian coordinates, as shown in Figs I and 3 
Circumferential and axial strain components, respectively 
Effective strain and effective stress, respectively 
Flattening ratio of cross-section of tube 
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v 

Ps, Pz 
O's, ffz 

601 , f-D 2 

Poisson's ratio 
Circumferential and axial radii of curvature, respectively 
Circumferential and axial stress components, respectively 
Notations defined by eqns (13a, b) 

INTRODUCTION 

The flattening of elastic tubes under pure bending has been a focus of much 
attention over many decades since Brazier first studied this problem in 
1927.1 For instance, Reissner, 2 Seide and Weingarten 3 and others have 
made contributions in this area, while the phenomenon of the flattening of 
elastic tubes under bending has been usually called the Brazier effect after 
Brazier's work. Since it is of great significance to chemical and nuclear power 
plants which possess complicated pipelines, 4 Gerber 5 studied this effect by 
taking the plastic properties into consideration, although his investigation 
was relatively elementary. Recently, numerous workers (e.g. Refs 6-9) have 
reported their experiments on this phenomenon and provided some 
elementary analyses to fit the experimental results. These results form the 
basis for the further theoretical studies of the problem. The main points are: 

(1) the flattening of cross-sections of a tube becomes more severe as the 
maximum surface strain of the tube increases; 

(2) the reduction of the diameter perpendicular to the vector of the 
bending moment is always almost equal to the elongation of that 
parallel to the vector; 

(3) the measurements in dynamic tests show that the moment at which 
the surface strain reaches its maximum value is very close to the 
moment when the applied load arrives at its peak unless the tube has 
been broken before this point; 

(4) the maximum surface strain of the tube with diameter between 
29"8mm and 165.2mm varies from 0.002 to 0"103 5. 

The well-known energy method is employed in the present paper. 
Formulae to show the flattening collapse of arbitrary cylindrical tubes with 
one symmetric plane under elastic-plastic pure bending are derived. As a 
special example, a circular tube is investigated in detail. Some valuable 
results, such as the expressions of bending moment and the flattening ratio 
of cross-section of the tube in terms of the radius of curvature, are obtained. 
The analyses in this paper are based on the following assumptions which 
agree with the experimental results stated above: 

(1) every cross-section of the tube remains in a plane during bending; 
(2) the material of the tube is incompressible, and the effective stress and 

effective strain are related by the power work-hardening law; 
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(3) the problem is considered as a static one and the strain is small in 
comparison with unity; 

(4) local unloading in the tube wall during bending is neglected. 

Hence, Ilyushin's simple loading theorem is satisfied, and the deformation 
theory can be employed. 

ANALYSES 

Attention is restricted to pure in-plane bending only, thus the cross-section 
of the tube should be symmetrical with respect to the plane to which the 
bending moment vector is perpendicular. Figures l(a) and (b) show the 

Y 

Oz 

(a) (b) 
Fig. 1. Cross-section of the middle surface: (a) undeformed; (b) deformed. 

configurations of the middle surfaces of the tube before and after 
deformation, respectively. The flattened cross-section is described by the 
Cartesian coordinates (x(s), y(s)), where s is the circumferential arc length 
measured along the undeformed middle surface. We need consider only the 
half of the cross-section defined by s~ < s < s2 due to the symmetry of the 
problem. The angle and the circumferential strain of the middle surface, ~(s) 
and ~(s), respectively, are introduced. 

From Fig. 1 the following useful relationships for the deformed middle 
surface can be derived: 

dx/ds = (1 + gs) cos (0 + q~) (1) 

dy/ds = (1 + gs) sin (0 + q~) (2) 
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where 0 = 0(s) is an angle given by the geometry of  the undeformed cross- 
section. In addition, the axial strain of  the middle surface, ~, can be 
expressed as 

x 
~= - 1 (3) 

P~ 

where p~ is the radius of curvature of the current centroid line of the tube. 
On the other hand, an infinitesimal segment of  the undeformed cross- 

section can be defined by the circumferential arc length, ds, and the distance 
from the middle surface, t (see Fig. 2). After deformation, the length of  this 

Fig. 2. 

$ 

s P~ 

dsld§ ~ d l  dl I 

ds ~ ~ t 
/ (1, I~sldS 

(a) (b) 
Circumferential deformation of an infinitesimal segment of tube wall: (a) 

undeformed; (b) deformed. 

arc becomes (1 + gs) ds. Since the thickness of  the tube wall remains constant 
due to the assumption of  incompressibility of the material, the axial strain of  
a tube fibre located at (s,t) becomes 

t 
e= = ~z(s) + - -  sin (0 + q0) (4) 

Pz 

To derive the expression of the circumferential strain, e~(s,t), note that the 
radius of curvature in direction s, p~, of  the middle surface can be expressed 
as  

\ds] +\ds] J (5a) 
P~= d y d a x  d2ydx  

ds ds 2 ds 2 ds 

According to eqns (1) and (2), it follows that 

1 + ~ ( s )  (5b)  
P~ - dO dq~ 

+ 
ds ds 
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Moreover, the undeformed length dl of  a circumferential 
becomes d/* after deformation, and can be written as 

and 

respectively. These give 

d l = d s ( 1  +dsdOt~j 
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d,'-d, ( 
es(s ' t ) -  -d-1 - gs + t 1 +  ds,I 

fibre at (s,t) 

(6) 

E 
3(1 - 2v) (e= + es) (lOa) 

E @= + (lOb) 
3(1 - 2v) 

where E is Young's modulus, v is Poisson's ratio, and 

2 2 
(11) 

and the deformation theory yields 

2 
tr= = ~ aog - 1(2e= - ~s) + 

2 
as = ~ aog"- ~(2es - e=) + 

Thus, the strain energy of  a tube per unit length can be expressed as 

f0 ) U = 2  azdez  + a s d e  s d t d s  (7) 
Jsl d-T~2 

where a s and o" s are the stress components  in the z and s directions, 
v and F respectively; T is the thickness of  the tube wall; and e= e s are the final 

strain values of  ez and es, respectively. 
In the above derivations, shear deformation is omitted and this will be 

held throughout  our investigation. 
As it has been assumed that possible local unloading in the tube wall 

during deformation is ignored, the constitutive equation of  the material of  
the tube can then be written as 

-- aoe" (8) 

where t~ and g are the effective stress and effective strain, respectively; a 0 is a 
proportional factor and n is a constant of  the material. Hence, 

~/g =tro g"-  ' (9) 
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Therefore, eqn (7) gives 

f ~ f r / 2  U =  2 (co I + co2)dtds  (12) 
d$1 J - -  T/2 

where 

e~l = ~ a o  -1(2e~- e~)d ez + l(2es - ez)d e~ (13a) 

E 
(ez + es) 2 + 2e~e~ (13b) 

0 9 2  - -  6(1 - 2v) 

in which, for the sake of convenience, e[ (i = z, s) have been replaced by 
el (i = s, z), respectively. 

Assuming that there is no elongation on the middle surface of the tube 
circumferentially, i.e. only the bending strain of e~ is considered, we have 

~ = 0 

Moreover, we only discuss a moderately thin-walled tube which has the 
following properties: 

~z >> ~ sin (0 + q)) 

t~ s  0 <<1 

Thus eqns (4) and (6) can be simplified to 

ez = ~ (14a) 

e~ = t ~  (14b) 

respectively. 
As a special case, we analyze an originally circular tube with radius R of 

the middle surface. Considering the second of the four experimental 
observations listed in the Introduction, let the displacement component 
normal to the middle surface (see Figs 3 and 4) be 

w = R~ cos 2~ (15) 

where ( is a dimensionless parameter which expresses the severity of 
flattening of the cross-section of the tube and is called the flattening ratio; ~b 
is an angle shown in Fig. 4. Thus, the variation of the circumferential 
curvature during deformation can now be expressed as 

dcp _ 3( cos 2~0 (16) 
ds R 
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Fig. 3. The displacements on the middle surface. 

The substitutions of eqn (16) into eqns (14) and then into eqn (12) yield the 
expression of strain energy U in terms of (. By noting that the variation of 
makes U take a minimum, it is obvious that 

0U 
~3~ = 0 (17) 

Accordingly, the bending moment is determined by 

dU 
M = t3--K (18) 

where K =  1/p, is the axial curvature. 

W 

t l d  

Fig. 4. The middle surface of an originally circular tube. 
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Keeping eqn (15) in mind, the current flow area, Af, of  the tube can then be 
calculated by simple integration after ( has been obtained from eqn (17). 
Thus the area ratio, A f / A  o, is obtained, where A 0 = r c (R-  7"/2) 2 is the 
original flow area of  the tube. 

A N U M E R I C A L  E X A M P L E  

To examine the above analyses, an example given by Ref. 9 is calculated by 
the present method numerically. The constitutive equation is taken to be 

= 895g 0"26 

and Young's  modulus  and the geometrical parameters are E =  
2-08 × 105 N ram-  2, R = 33-3 mm and T = 9"5 mm, respectively. Table 1 

T A B L E  1 
Relationship between K and 

No. K (m- 1) 

1 o. 1 0-002 9 
2 0-2 0.007 1 
3 0.3 0.013 1 
4 0-4 0-020 2 
5 0.5 0.029 9 
6 0.6 0.038 8 
7 0.7 0.0519 
8 0.8 0.070 3 
9 0.9 0.091 0 

10 1-0 o-112 7 
11 1.7 0.269 2 
12 2.5 0.473 2 
13 5.0 0.855 6 

shows the values of  the dimensionless parameter ~ with the variation of  
curvature K. Figure 5 displays the relationship between K and  ~ directly. In 
this figure, the dot ted curve is the enlargement of  segment OA in the solid 
curve. It can be seen from Fig. 5 that ~ varies very slowly at the beginning of  
deformation and increases severely when 0.5 m -  1 < K < 1.5 m -  1, and then 
varies very slowly again after K > 4 m -  1. The upper curve in Fig. 6 shows the 
case of  decreasing flow area, Af, of  the tube with increasing curvature K. It 
follows that this curve is similar to the ~-K curve of  Fig. 5 if the latter is 
reversed about  a horizontal axis. It also shows that when Af becomes smaller 
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Fig. 5. Curve of (-K. 

and smaller, the upper and lower parts of  the inner surface of  the tube nearly 
touch each other at this time. The variation of  bending moment  shown by 
the lower curve in Fig. 6 indicates that the load-carrying capacity of  the tube 
first increases and then decreases and finally reaches a constant value. It can 
also be seen that the maximum value of  the bending moment  is at 
K =  1.4m -1. 

0.7 

o 0'6 .< 
~ 0.5 
< 

0.4 

0.3 

0.2 

0.1 

0 

11 I 
lo I 
0.9, 

0"8 

X 

2.2 I 
2"0 i 

1-8 i 
1-61 

1.41 

1-2J 

1-01 

0.8 

0.6 

0.2 

0.4 

I I I l l I I I l I I 

0 1"0 2.0 3-0 4 '0 5.0 6-0 
K (1/rn) 

Fig. 6. Curves of  M-K and AJAo-K. 
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C O N C L U S I O N S  

The results on the variations of  flattening ratio and bending m o m e n t  
obtained by the present me thod  are in good accordance with those reported 
by experiments. 6-9 The procedure of  the present analyses is simple, 
s traightforward and convenient. Numerical  results show that  the flow area 
decreases rapidly with increment of  flattening ratio of  the cross-section, and 
this would give an advantage in controll ing a rupture accident of  a pipeline 
in chemical and nuclear power plants. 

However, the investigation reported in this paper  is preliminary. The 
effects of  many  factors, such as the inner pressure, the local unloading and so 
on, are ignored, since the focus of  at tent ion at present is to facilitate the 
engineering application. It is expected that  these considerations will be the 
subject of  further projects by the authors.  
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