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In this paper, an enriched radial point interpolation method (e-RPIM) is developed for the
determination of crack tip fields. In e-RPIM, the conventional RBF interpolation is novelly
augmented by the suitable trigonometric basis functions to reflect the properties of stres-
ses for the crack tip fields. The performance of the enriched RBF meshfree shape functions
is firstly investigated to fit different surfaces. The surface fitting results have proven that,
comparing with the conventional RBF shape function, the enriched RBF shape function
has: (1) a similar accuracy to fit a polynomial surface; (2) a much better accuracy to fit a
trigonometric surface; and (3) a similar interpolation stability without increase of the con-
dition number of the RBF interpolation matrix. Therefore, it has proven that the enriched
RBF shape function will not only possess all advantages of the conventional RBF shape
function, but also can accurately reflect the properties of stresses for the crack tip fields.
The system of equations for the crack analysis is then derived based on the enriched RBF
meshfree shape function and the meshfree weak-form. Several problems of linear fracture
mechanics are simulated using this newly developed e-RPIM method. It has demonstrated
that the present e-RPIM is very accurate and stable, and it has a good potential to develop a
practical simulation tool for fracture mechanics problems.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Understanding the deformation mechanisms and stress fields at crack tips is essential for the safety assessment and life
prediction of engineering structures. Due to the stress singularity and nonlinear features of crack tip fields, their solutions
are usually difficult to be obtained analytically. In recent times, the finite element method (FEM) is a dominant numerical tool
in the analysis of fracture problems, especially for stationary cracks. However, FEM has some distinct shortcomings [1]
particularly for dynamic cracks. To overcome these shortcomings, the concept of meshless or meshfree method has been
proposed [2].

Recently, much effort has been directed towards the development of meshfree methods. Detailed reviews of meshfree
methods can be found in, e.g., monographs [2,3]. There are many categories of meshfree methods [2], and a group of mesh-
free methods have been developed including the meshfree collocation methods [4], the smooth particle hydrodynamics
(SPH) [5], the element-free Galerkin (EFG) method [6], the reproducing kernel particle method (RKPM) [7], and the point
interpolation method (PIM) [8]. To alleviate the global integration background cells, the meshfree methods based on the
local weak-forms and the boundary integral equation (BIE) have also been developed, including the meshless local
. All rights reserved.
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Nomenclature

a, b, c vector of interpolation coefficients, defined in Eq. (7)
B matrix for derivatives of shape function defined in Eq. (23)
D matrix of material constants, defined in Eq. (23)
et, ec computational error indicators, defined in Eqs. (32) and (33)
E Young’s modulus
f vector of body force, defined in Eq. (18)
F force vectors for the meshfree method, defined in Eq. (22)
f1, f2 functions to be fitted, defined in Eqs. (34) and (35)
G total interpolation matrix, defined in Eq. (12)
J J integral for crack, defined in Eq. (24)
KI, KII, KIII stress intensity factors for mode-I, mode-II , and mode-III
K stiffness matrix the meshfree method, defined in Eq. (22)
n vector of the unit outward normal, defined in Eq. (19)
P,R vectors for polynomial and RBF basis functions defined in Eq. (7)
T vectors for enriched trigonometric basis functions defined in Eq. (6)
Pm, R0, Tl interpolation matrixes for enriched RBF defined in Eq. (9)
R radial basis function (RBF), defined in Table 1
(r,h) cylindrical coordinate, defined in Eqs. (1)–(4)
u displacement vector, defined in Eqs. (1), (3) and (20)
ue nodal displacement vector used in interpolation, defined in Eq. (8)
�u; �t prescribed boundary displacement and traction, defined in Eq. (19)
x coordinate vector
C global boundary
j Kolosov constant
m Poisson’s ratio
/ shape function, defined in Eq. (16)
U shape function vector, defined in Eq. (16)
P functional
Cu, Ct boundaries for displacement and traction boundary conditions, defined in Eq. (19)
e, r vectors of strain and stress, defined in Eqs. (2), (4), (19) and (20)
s shear stress
X problem domain
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Petrov-Galerkin (MLPG) method [9], the local radial point interpolation method (LRPIM) [10], the boundary node method
(BNM) [11], and the boundary point interpolation method (BPIM) [12,13]. These meshfree methods have found many appli-
cations in engineering and science [3].

In spite of the impressive progresses, there are still some technical issues in the development of meshfree techniques, for
instance, (a) the lack of theoretical study on the computational convergence and stability; (b) the relatively worse compu-
tational efficiency; and (c) the lack of commercial software packages for meshfree analyses. Recently, some deep researches
have been conducted and the above issues have been partially resolved. Liu et al. [14,15] proposed a node-based smoothed
point interpolation method (NS-PIM), which is formulated using the polynomial point interpolation method (PIM) [8] or the
radial point interpolation method (RPIM) [16]. It was found that NS-PIM behaves ‘overly-soft’, leading to the so-called tem-
poral instability when it is used to solve dynamic problems. The formulation was also elaborated with a theoretical base on
the G space theory [1]. Invoking the G space theory and the weakened weak-form (W2) [17], the meshfree (or smoothed FEM)
methods show a number of attractive properties, e.g., conformability, softness, upper/lower bound, super-convergence, ultra
accuracy, and they also work well with triangular background cells [1] . Another new development in meshless techniques is
the developments of the class of smoothed meshfree methods, Smoothed Point Interpolation Method (S-PIM) and Smoothed
FEM (S-FEM)[18]. These smoothed meshless methods have many advantages, including no mapping needed, excellent
performance for triangular/tetrahedral cells, and insensitive to cell distortion. Because of the unique advantages, S-PIM
and S-FEM have been successfully applied to fracture problems. [19,20].

As above discussed, meshfree methods do not require a mesh to discretize the problem domain, and the approximate
solution is constructed entirely by a set of scattered nodes. The principal attraction of meshfree methods is their capacity
in dealing with problems with moving boundaries and discontinuities, for instance, phase transition and crack propagation
problems, and their ease in using the enriched basis functions based on the asymptotic displacement fields near the crack tip
[21]. Among others, EFG, which is based on the moving least squares (MLS) and the enriched weight/basis functions, has
been successfully applied to fracture problems [21–23].

The radial point interpolation method (RPIM) proposed by Liu and coworkers [2,16] takes use of the radial basis function
(RBF) and have some attractive properties, including the robustness in interpolation, good performance for irregular nodes,
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good accuracy, and delta properties for easy implementation of essential boundary conditions. Therefore, RPIM has been suc-
cessfully used in the analysis of solids, fluids and composite materials [2,24]. Although many researches have proven that
RPIM based on the conventional RBF augmented by polynomial has very good accuracy for problems with polynomial solu-
tions, it cannot accurately reproduce the stress field of the crack tip due to its’ nature of singularity and complex non-poly-
nomial solutions, e.g., the trigonometric solutions. Therefore, there is little application of conventional RPIM for fracture
problems.

In this paper, an enriched radial point interpolation method (e-RPIM) is developed for the determination of crack tip
fields. The conventional RBF interpolation [2] is novelly augmented by the trigonometric basis functions to reflect the prop-
erties of the crack tip stress fields. The performance of the enriched RBF meshfree shape functions is firstly investigated
through the surface fitting. Then, the system of equations for the 2-D crack analysis is derived based on the enriched RBF
meshfree shape function and the meshfree weak-form. Several crack problems are simulated by this newly developed
e-RPIM. A parametric comparison with the results in the literature and from analytical solutions shows that the present
e-RPIM is accurate, efficient and effective for the analysis of crack tip fields.

2. enriched RBF shape functions

2.1. Enriched basis function

In two-dimensional (2-D) linear elastic fracture mechanics (LEFM), both mode-I and mode-II crack tip fields should be
considered. The mode-I and mode-II crack tip fields are expressed as [25,26]
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where KI and KII are the stress intensity factors (SIF) for mode-I and mode-II dependent upon the crack length, the specimen
geometry and the applied loading, and (r,h) are the cylindrical coordinates of a point with the origin located at the crack tip
and the positive angle measured counterclockwise from the axis of the crack. j is the Kolosov constant defined as,
j ¼
3� 4t plane strain
ð3� tÞ=ð1þ tÞ plane stress

�
ð5Þ
After using trigonometric identities, one can show that all of the functions in Eqs. (1)–(4) are spanned by the following four
basis functions [26]:
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In the application of the meshfree method to linear elastic fracture mechanics (LEFM) problems, it is advantageous to add
these four basis functions into the interpolation so that the stress singularity can be captured without having a very fine no-
dal density around the crack tip. It was first used by Fleming et al. [21] in the element-free Galerkin (EFG) method, based on
the moving least squares approximation (MLSA), and called the resulting basis as enriched basis functions. It should be men-
tioned here that, comparing with FEM, the meshfree method provides possibility to include these enriched basis functions
because of the freedom in construction of meshfree shape functions [2].

2.2. Construction of enriched RBF meshfree shape function

At present, a number of ways to construct meshfree shape functions have been proposed [2]. In this paper, the radial basis
function (RBF) [2] interpolation augmented by the polynomial basis functions and the trigonometric basis functions given in
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Eq. (6) is used to construct the meshfree shape functions. The locally supported enriched RBF interpolation formulation can
be written as:
uðxÞ ¼
Xn

i¼1

RiðrÞai þ
Xm

j¼1

pjðxÞbj þ
X4

l¼1

tlðxÞcl ¼ RT aþ PT bþ TT c ¼ RT PT TT
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where Ri(r) is the RBF, n is the number of nodes in the interpolation domain of point x, pj(x) is monomials, m is the number of
polynomial basis functions, tl(x) is the trigonometric basis function given in Eq. (6), and ai, bj and cl are interpolation
coefficients.

It should mention here that in Eq. (7), the trigonometric basis functions T are augmented in order to capture the singular
stress field around the crack tip. In the conventional RBF interpolation, the RBF is only augmented by the polynomial basis
function which is not always necessary. The objectives to add the polynomial base functions are summarized as:

(1) Adding polynomial terms up to the linear order can ensure the C1 consistency for the RBF shape function, because the
C1 consistency is essential to exactly pass the standard patch test;

(2) in general, adding polynomial terms can always improve the accuracy of the results, at least no bad effect has been
observed for meshfree weak-form methods;

(3) adding polynomial terms reduces the sensitivity of the shape parameters of RBF, and will provide us much more free-
dom and a wider range in choosing shape parameters; and

(4) adding polynomial terms can improve the interpolation stability for some RBFs [27,28].

There are a number of RBFs, such as the Multi-quadrics (MQ), Gaussian (EXP) and Thin Plate Spline (TPS). Their characters
in meshfree methods have been carefully investigated by many researchers [27,29]. These three types of RBFs and their
shape parameters used in this paper can be found in Table 1.

In order to determine interpolation coefficients in Eq. (7), an interpolation domain is formed for the point of interest at x,
and n field nodes are included in this interpolation domain. Coefficients in Eq. (7) can be determined by enforcing Eq. (7) to
be satisfied at these n nodes to lead to n linear equations, one for each node. The matrix form of these equations can be ex-
pressed as
ue ¼ u1 u2 � � � unf gT ¼ R0aþ Pmbþ Tlc ð8Þ
where R0, Pm and Tl are matrixes for RBF, polynomial basis functions and trigonometric basis functions, respectively, i.e.
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Table 1
The employed parameters for RBFs.

Name RBF Shape parameter [2]

Multi-quadrics (MQ) RiðxÞ ¼ r2
i þ ðacdcÞ2

h iq ac = 1.0, q = 1.03 or q = 0.98

Gaussian (EXP)
RiðxÞ ¼ exp �ac

ri
dc


 �2
� 

ac = 0.31

Thin Plate Spline (TPS) RiðxÞ ¼ rg
i

g = 2.01
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However, in Eq. (8), there are only n equations for n + m + l variables. To obtain unique solution, additional m + l equations
should be added, which are the m + l constraint conditions, i.e.
Xn

i¼1

pjðxiÞai ¼ PT
ma ¼ 0; j ¼ 1;2; . . . ;m ð10Þ

Xn

i¼1

TjðxiÞai ¼ TT
l a ¼ 0; j ¼ 1;2; . . . ; l ð11Þ
Combining Eqs. (8), (10) and (11) yields the following set of equations in matrix format, i.e.
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(a) Enriched RBF shape function 

(b) The first order derivative of enriched RBF shape function
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Fig. 1. The enriched MQ RBF meshfree shape functions and their derivatives.
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Therefore, the following enriched RBF interpolation formulation is then obtained by substituting a0 into Eq. (7):
uðxÞ ¼ RT PT TT
n o

G�1

ue

0
0

8><
>:

9>=
>; ¼ UðxÞ KðxÞ WðxÞf g

ue

0
0

8><
>:

9>=
>; ¼ UðxÞue þ KðxÞ � 0þWðxÞ � 0 ¼ UðxÞue ð15Þ
where the enriched RBF meshfree shape functions can be expressed as
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Fig. 1 shows the enriched MQ RBF meshfree shape functions and their derivatives. The shape parameters for MQ are used
as ac = 2.0, dc = 0.5, and q = 0.5. From Fig. 1, we can clearly see that an enriched RBF shape functions have high continuity.
As discussed by Liu and Gu [2,30], the RBF interpolation may not satisfy the partition of unity (the summation of shape
functions is 1.0 [13]) exactly without polynomial augmented. However, if the constant term is included in the aug-
mented polynomial basis functions, it has been found the enriched RBF shape functions can satisfy the partition of unity
exactly.

In addition, the enriched RBF shape functions also have the Kronecker delta function property. For example, in Fig. 1a, at
point xT = [0,0], where nodal number is 13, we have
/iðxÞ ¼
1 i ¼ 13 ðx ¼ x13Þ
0 i – 13 ðx – x13Þ

�
ð17Þ
This confirms numerically that the enriched RBF meshfree shape functions possess the Kronecker delta function property. It
can be also proven theoretically [2]. The Kronecker delta condition allows a straightforward imposition of boundary condi-
tions. Hence, it makes easy to enforce the essential boundary conditions in the meshfree method based on the enriched RBF
shape functions. Comparing with other meshfree shape functions, the delta property is one of distinguished advantages of
the enriched RBF meshfree shape function.
3. Enriched RPIM (E-RPIM)

3.1. Discrete equations of e-RPIM

Consider the following 2-D problem of solid mechanics in domain X bounded by C [2]:
rrþ f ¼ 0 in X ð18Þ
The boundary conditions are given as follows:
u ¼ �u on Cu; r � n ¼ �t on Ct ð19Þ
The principle of minimum potential energy can be stated as follows: The solution of a problem in the small displacement
theory of elasticity is the vector function u which minimizes the total potential energy P given by
P ¼
Z

X

1
2
eT � rdX�

Z
X

uT � f dX�
Z

Ct

uT � �tdC ð20Þ
with the boundary conditions described in Eq. (19), where e is the strain vector. Substituting the expression of u given in
Eq. (15), and using the stationary condition for Eq. (20) yields the following discrete equation of e-RPIM:
KU ¼ F ð21Þ
where K, U, and F are stiffness matrices, the displacement vectors, and the force vectors for e-RPIM, i.e.,
Kij ¼
Z

X
BT

i DBj dX

Fi ¼
Z

Ct

/i
�tdCþ

Z
X

/if dX ð22Þ
where B and D are
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Fig. 2. The Relay model for multi-cracking problems [23].
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3.2. The relay model

With the use of nodal based interpolation techniques, the meshfree methods offer great opportunities to handle problems
with complex geometry including cracks. However, there is general discontinuity of displacements across a crack, and the
interpolation domain used for the construction of meshfree shape functions can contain numerous irregular boundary frag-
ments and the computation of nodal weights based on physical distance can be erroneous. This issue will become more seri-
ous in dealing with the fracture problems, especially for the multiple cracking problems. Several techniques have been
reported on the construction of meshfree approximations with discontinuities and non-convex boundaries, including the
visibility method [6], the diffraction method [21], and the transparency method [21]. However, these methods are only effec-
tive for problems with relatively simple domains (e.g. with one or two cracks, or not many non-convex portions on the
boundaries), but not effective for domains with highly irregular boundaries (e.g., with multiple cracks). Liu and Tu [31] have
developed a relay model to determine the domain of influence of a node in a complex problem domain.

The relay model is motivated by the way of a radio communication system composed of networks of relay stations. Con-
sider an interpolation domain containing a large number of irregular boundary fragments (or cracks), as shown in Fig. 2, in
which O is the interpolation point, P is the field node, and R is the relay point. The field node, e.g., P2, first radiates its influ-
ence in all directions equally, like a radio signal being broadcasted at a radio station, until the contained boundaries are
encountered. Then its’ influence is relayed through relay points, e.g., R2�1 and R1�1, to reach the interpolation point O.
The distance (called equivalent distance) between the interpolation point and the field node can then be calculated. The de-
tails for the relay model can be found in the book by Liu [3] and paper by Liu and Tu 31].
4. Computation of stress intensity factors

The J integral was introduced by Rice [32], i.e.,
J ¼
Z

C
wd1j � rij

@ui

@x1

� �
nj dC ð24Þ
where w ¼ 1
2 rijeij is strain energy density. For a mixed mode problem in LEFM, J is related to the stress intensity factors from

Irwin’s [33] relation,
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J ¼ 1
E0

K2
I þ K2

II


 �
ð25Þ
where
E0 ¼
E; plane stress

E
1�t2 ; plane strain

(
ð26Þ
is the effective Young’s modulus. KI and KII donate the stress intensity factors (SIFs) for mode I and mode II, respectively.
The interaction integral was developed to be domain integral based on the J integral which is contour integral, and it is

used to extract stress intensity factors [34,35] in LEFM. The procedures are described as follows.
Consider two equilibrium states of a model with crack, status 1 is the actual status for the boundary conditions and status

2 is the auxiliary status.
Mð1;2Þ ¼
Z

C
wð1;2Þd1j � rð1Þij

@uð2Þi

@x1
� rð2Þij

@uð1Þi

@x1

" #
nj dC ð27Þ
where M(1,2) is the interaction integral, which includes the terms from the actual mixed mode state for the given boundary
conditions (superscript 1) and the superimposed near tip auxiliary state (superscript 2).
W ð1;2Þ ¼ 1
2

rð1Þij eð2Þij þ rð2Þij eð1Þij


 �
ð28Þ
is the mutual strain energy density.
The contour integral can be converted to the domain integral for numerical evaluation.
Mð1;2Þ ¼
Z

A
rð1Þij

@uð2Þi

@x1
þ rð2Þij

@uð1Þi

@x1
�W ð1;2Þd1j

" #
@q
@xj

dA ð29Þ
where A is the area of the integral domain, rij and ui are the components of the stress tensor and displacement vector, respec-
tively. W(1,2) is the mutual strain energy from the two states and q is a differentiable function selected to have a value of unity
at the crack tip, zero along the boundary of the domain and arbitrary elsewhere.

The function q is selected as follows in this paper
q ¼ 1� 2jxj
c

� �
1� 2jyj

c

� �
ð30Þ
where c is the length of the square area for interaction integral.
The stress intensity factors can then be evaluated by the interaction integral as
KI ¼
E0

2
Mð1;2Þ ð31Þ
Note that all quantities are evaluated with respect to the coordinate system with the crack tip as the origin. Following similar
process, KII can also be calculated from the above equations.
5. Surface fitting

The performance of a meshfree method firstly depends upon the quality of the meshfree shape functions. Hence the inter-
polation errors using the enriched RBF meshfree shape function are firstly investigated through surface fitting for given sur-
faces (functions) [2].

A domain of (x,y) 2 [0,10] � [0,10] is considered for the surface fitting. This domain is represented by 11 � 11 uniformly
distributed field nodes with a constant nodal distance dc = 1.0. A total of 100 points of (x,y) 2 [0.4,9.4] � [0.4,9.4] with dis-
tance h = 1.0 are considered as interpolation points or sample points; they are intentionally chosen not to coincide with the
field nodes to obtain a fair assessment of the fitting accuracy. A rectangular local support domain is used to perform the
interpolation for a sample point.

The conventional RBF interpolation with only linear polynomials p = {1 x y} and the enriched RBF interpolation with linear
polynomials p = {1 x y} plus 2-terms trigonometric enrichment T = {sin(h) sin(h)cos(h)}T are investigated for the surface fit-
ting. The approximated value of the field function f(x) for each sample point x can be interpolated using the nodes in the
support domain and the meshfree shape functions. The following norms are used as error indicators. The average fitting er-
rors of function values over the entire domain are defined as
et ¼
1
N

XN

i¼1

~f i � fi

fi

					
					 ð32Þ
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where N is the total number of sample points in the entire domain, fi is the exact values of this function, and ~f i is the approx-
imated values of function. In this example, N = 100 is used.

The condition number is associated with the linear equation A � X = B, it gives a bound on how inaccurate the solution X
will be after approximate solution. It is a parameter to reflect the property/quality of matrix A, which can reveal the method’s
capacity to construct a good-quality matrix. Larger matrix condition number usually leads to larger approximation error. To
compare the difference of condition numbers for the RBF interpolation matrix between conventional and enriched RBFs, the
following norm is used
ec ¼
1
N

XN

i¼1

Ei � Ci

Ci

� �
ð33Þ
where ec denotes the difference of condition numbers between the conventional and the enriched RBF interpolations, Ei and
Ci are condition numbers of the enriched RBF and the conventional RBF, respectively. N = 100 is used in the following study.

5.1. Fitting of a planar surface

A 2-D plane is considered at first, i.e.,
f1ðx; yÞ ¼ xþ yþ 1:0 ð34Þ
It can be observed that both the conventional and the enriched RBF meshfree shape functions can exactly fit the plane to the
machine accuracy (10�16). This confirms that the enriched RBF shape functions have remained the linear reproduction prop-
erty of RBF meshfree shape functions. This linear reproduction property is very important to ensure the convergence of a
meshfree method. It should be mentioned here that the planar surface fitting will have errors (10�5–10�7) if the linear poly-
nomial terms are not included in the RBF interpolations. This is because RBF without augmenting the linear polynomial
terms cannot exactly reproduce linear polynomials [3]. It has proven the importance of the augment of the linear polynomial
in the RBF interpolation.

5.2. Fitting of a complicated trigonometric surface

The following non-polynomial (trigonometric) surface is also fitted using the conventional and the enriched RBF meshfree
shape functions.
f2ðx; yÞ ¼ sinðhÞ þ sinðhÞ cosðhÞ þ 1:5 ð35Þ
As illustrated in Table 2, it has found that to fit the above non-polynomial surface, the enriched RBF interpolation augmented
with the trigonometric basis functions has very good computational accuracy to 10�13–10�16. For comparison, the conven-
tional RBF shape functions are also used to fit the same surface. As presented in Table 2, the fitting errors resulted from the
conventional RBF shape functions are around 10�3, which are much larger than those of the enriched RBF shape functions. It
can be concluded that the enriched RBF shape functions can exactly reproduce a trigonometric surface. This property is cru-
cial in the analysis of crack tips because the enriched RBF shape functions can accurately capture the singular stress field of
the crack tip, as discussed in Eqs. (1)–(4).

Furthermore, as we can see from Table 2, the condition number differences, ec, between the enriched RBF interpolation
and the conventional RBF interpolation are very small and usually negative. It has proven that, comparing with the conven-
tional RBF interpolation, the enriched RBF interpolation does not lead to increase of the condition number, and even slightly
decreases the condition number of the interpolation matrix. Therefore, the enriched RBF interpolation has similar interpo-
lation stability/quality to (or even a little bit better than) the conventional RBF interpolation.
Table 2
Surface fitting results for the trigonometric surface by the enriched RBF meshfree shape
functions.

Type of RBFs et Condition numbers ec (%)

MQ-RBF
Conventional 3.50 � 10�3 107–1010 �9.63
Enriched 3.59 � 10�15

EXP-RBF
Conventional 4.10 � 10�3 103–105 �5.46
Enriched 1.27 � 10�16

TPS-RBF
Conventional 3.40 � 10�3 107–1011 �8.13
Enriched 3.63 � 10�13



Table 3
Comparison of CPU time for conventional and enriched RBF shape functions.

Enriched RBF (s) Conventional RBF (s)

Surface fitting 1.007 0.965
Fitting and plotting 2.66 2.55
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The computational efficiency of the enriched RBF interpolation is also studied. The CPU time is listed in Table 3. This study
is conducted in a HP 6710b Laptop, and the average CPU time of 10 times repeated calculations is taken to reduce the sta-
tistical error. As shown in Table 3, it is clearly revealed that the enriched RBF interpolation needs more CPU time than the
conventional RBF interpolation, but the difference is small within only around 4%. The increase of the CPU time is resulted
from the expansion of the size of the interpolation matrix due to the augmented trigonometric basis functions in the en-
riched RBF interpolation.
6. e-RPIM for analyses of crack tip fields

In this section, the enriched-RPIM (e-RPIM) is applied to analyze crack tip fields for problems in linear fracture mechanics.
The enriched MQ-RBF interpolation with linear polynomials p = {1 x y} plus 4-terms trigonometric enrichment given in Eq.
(6) is employed to construct meshfree shape functions. The shape parameters for MQ RBF are ac = 1.0, and q = 1.03[2].
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L 

Fig. 3. An edge-cracked rectangular plate subjected to the tension loading.

(a) (b) (c)
Fig. 4. Nodal distributions: (a) 11 � 21 regular nodes; (b) 21 � 41 regular nodes; (c) 394 irregular nodes generated by the software MFree 2D.
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6.1. Mode I single edge-cracked plate

An edge-cracked rectangular plate with the dimension W = L = 1 subjected to a uniformed tension of f = 1.0, as shown in
Fig. 3, is studied. The plane strain condition is considered, and E = 1000, m = 0.25. The analytical results for KI had been given
by Gdoutos [25] as,
KI ¼ �t
ffiffiffiffiffiffi
pa
p

1:12� 0:23
a
w
þ 10:55

a
w


 �2
� 21:72

a
w


 �3
þ 30:39

a
w


 �4
� 

ð36Þ
Table 4
Comparison of the stress intensity factors for mode-I.

a/w Analytical KI e-RPIM (11 � 21 nodes) e-RPIM (21 � 41 nodes)

KI Error(%) KI Error(%)

0.6 5.53 5.63 1.8 5.60 1.3
0.5 3.54 3.48 �1.7 3.58 1.1
0.4 2.36 2.23 �5.5 2.30 �2.5
0.3 1.61 1.39 �13.7 1.63 1.2
0.2 1.09 0.95 �12.8 1.03 �5.5
0.1 0.66 0.56 �15.2 0.69 4.5

Fig. 5. Schematic deformation enlarged by 50 times (11 � 21 nodes, a/W = 0.5).

Fig. 6. Schematic deformation enlarged by 50 times (21 � 41 nodes, a/W = 0.5).
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The newly developed e-RPIM is employed to simulate this LEFM problem. The problem domain is firstly discretized by
regularly distributed 11 � 21 and 21 � 41 nodes as shown in Fig. 4a and b. Stress intensity factors are computed using
the interaction integral. As listed in Table 4, comparing with the analytical solution in terms of the crack length-width ratio
a/W = 0.1–0.6, the e-RPIM method leads to stable and accurate results as illustrated in Table 4. A schematic deformation is
also plotted in Figs. 5 and 6 when a/W = 0.5 after 50 times enlargement.

The irregular nodes are also used to simulate this problem. As shown in Fig. 4c, 394 irregular nodes are employed in this
study. For a/w = 0.5, the irregular nodal distribution leads to KI = 3.59 with error around 1.4%. Therefore, the e-RPIM also has
good accuracy and stability for the irregular nodes. Robustness for irregular nodal distribution is one of the distinguished
advantages of e-RPIM. It should be mentioned here that in Fig. 4c, more field nodes are used surrounding the crack tip. There-
fore, this irregular nodal distribution has better effectiveness than the regular nodal distributions, and it can be proven that
394 irregular nodes has led to almost the same computational accuracy as 861 regular nodes (21 � 41).

6.2. Mode I double edge-cracked plate

A square plate with double edge-cracks, as shown in Fig. 7, is also studied. A total 441 regular nodes are used. Ching and
Batra [26] studied the same problem and the analytical KI given by Gdouos [25] is (KI)analytical = 4.65. Using the interaction
integral, the present e-RPIM method leads to (KI)numerical = 4.78, which has a good agreement with the analytical solution.
y
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Fig. 7. A double-edge square plate subjected to the tension loading.
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t=1.0

Fig. 8. An edge-cracked plate subjected to the shear loading.
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6.2.1. Mode-II edge-cracked plate
An edge-cracked plate is clamped at the bottom and the top end is subjected to a far field shear stress t = 1.0, as shown in

Fig. 8 with its length L = 16 and width W = 7. A plane strain state of deformation is assumed. The reference solution for the
Fig. 9. 21 � 41 nodal distribution.

Fig. 10. Schematic deformation enlarged by 10 times (21 � 41 nodes, a/W = 0.5).

Fig. 11. 29 � 65 nodal distribution.
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stress intensity factors with a/W = 0.5 has been given by Fleming et al. [21] and Ching and Batra [26] with KI = 34 and
KII = 4.55. To obtain the reference solutions for different a/W ratios, FEM with very fine mesh is also employed to simulate
the same problem [36]. Two nodal distributions with 21 � 41 and 29 � 65 nodes are employed, as shown in Figs. 9 and 11.
The predicted stress intensity factors from the proposed e-RPIM method are listed in Table 5. The deformed cracked plate
with a/W = 0.5 is also plotted schematically in Figs. 10 and 12 after 10 times enlargement. It can be found that a good agree-
ment has been obtained with those from the FEM reference solutions.

6.3. Cracks in a complex shaped plate

As shown in Fig. 13, let us now consider a plate of complex shape with a ‘‘C’’ shaped crack [23]. The material constants
used are E = 3.0 � 107 and m = 0.3. One edge of the plate is fixed, one edge is subjected to uniformly distributed tension load,
Table 5
Comparison of the stress intensity factors for the edge-cracked plate under shear loading on the top.

a/w FEM e-RPIM (21 � 41 nodes) e-RPIM (29 � 65 nodes)

KI KII KI KII KI KII

0.5 34.09 4.54 34.05 4.95 34.12 4.76
0.4 25.8 3.49 22.92 3.08 23.20 3.16
0.3 19.82 2.46 17.13 2.45 19.86 2.52

Fig. 12. Schematic deformation enlarged by 10 times (29 � 65 nodes, a/W = 0.5).
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Fig. 13. A plate with a ‘‘C’’ shaped center crack.



-3.0

-2.0

-1.0 

0.0

1.0

2.0 

3.0

-11.0 -6.0 -1.0 4.0 9.0

y

xy

yy

St
re

ss

xx

Fig. 14. The stress distributions along the y axis.
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and the rests are traction free. The reference solution obtained by the sole meshfree method (the software of MFree 2D: Liu
[3]) with very fine nodal distribution has been given by Gu and Zhang [23]. Fig. 14 shows the stress distribution along y-axis,
and very good agreement is obtained between the results by the presented e-RPIM and the reference solutions [23]. Actually,
if we plot the results in [23] into Fig. 14, curves for rxx and ryy obtained in this paper and by Gu et al. are almost identical. The
stress concentrations on the crack tips have been clearly shown with the stress concentration factor around 3.4, which was
3.3 reported by Gu and Zhang [23].

7. Conclusion

To handle the stress concentration or singularity is the major challenge in modeling and simulation of fracture problems.
Although the meshfree method provides an alternative numerical technique for crack problems, the conventional meshfree
method still has difficulty in analysis of crack tips. In this paper, an enriched radial point interpolation method (e-RPIM) is
developed for the determination of crack tip fields. The enriched RBF interpolation is proposed through RBF augmenting the
suitable trigonometric basis functions in order to reflect the properties of stress fields for the crack tips. Several numerical
techniques are developed to ensure the effectiveness for this e-RPIM method. We have drawn the following conclusions:

(a) The surface fitting has proven that comparing with the conventional RBF meshfree shape functions, the enriched RBF
meshfree shape functions have: (1) a similar accuracy to fit a polynomial surface; (2) a much better accuracy to fit a
trigonometric surface; and (3) a similar interpolation stability due to no increase of the condition number of the inter-
polation matrix. Therefore, it has proven that the enriched RBF shape functions will not only possess all advantages of
the conventional RBF shape functions, but also can accurately reproduce the trigonometric functions.

(b) Several numerical examples have been studied to demonstrate the effectiveness of the present e-RPIM for the analysis
of crack tip fields, and very good results have been obtained. The e-RPIM performs better than the conventional RPIM
because the relative trigonometric basis functions have been included in construction of enriched RBF shape functions.

Hence, it has been proven that the newly proposed e-RPIM is effective and robust for the analysis of fracture mechanics
problems, and it has good potential to become a powerful numerical tool.
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