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Abstract

This paper describes a systematic approach to the modeling of engineering systems using a fuzzy formulation that is
independent of human knowledge. The computer algorithm described here operates on a set of experimental observations of
the system and constructs an optimum fuzzy model for these observations. The program automatically selects membership
functions, deduces inference rules, constructs logical relations, and determines the formulae for conducting union and
intersection operations. Membership functions, rules, and logical operations are de�ned parametrically. Model parameters are
optimized so that the model can, at least, re-produce with minimum error the data that were used in obtaining the membership
functions and rules. Therefore, model parameters are optimized to minimize error or entropy of the back-inferences of the
observations from which the model was constructed. To reach the global minimum and avoid entrapment in a local minimum,
a random search is carried out, then followed by a systematic Hooke–Jeeves search optimization algorithm. It has been found
that this technique is more successful, compared with other statistical techniques. c© 2001 Elsevier Science B.V. All rights
reserved.
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analysis

1. Introduction

Fuzzy logic has progressed greatly since the �rst in-
troduction of fuzzy sets by Zadeh [23], and has estab-
lished itself as an important branch of human thinking
and knowledge representation. The degree of progress
and sophistication achieved in the mathematical the-
ory of fuzzy sets can be clearly demonstrated by many
publications in specialized journals and monographs.
However, practical engineering applications have been
based on approaches that were developed in the ear-
lier stages. For example, many of the most successful

∗ Corresponding author.

commercial engineering applications of fuzzy logic,
i.e. fuzzy controllers, are still based on the work of
Mamdani and Assilian in 1975 [11], where symmet-
ric triangular membership functions were used, and
logical operations for union and intersection were per-
formed using min. and max. operations, respectively
[3]. Decisions on many aspects of fuzzy modeling
have been mostly justi�ed by the argument that “they
work”.
The absence of a clear procedure for fuzzy

modeling has always been emphasized by anti-
fuzzy critics [12]. Moreover, by using these sim-
ple formulations, fuzzy models cannot achieve the
level of accuracy required by many engineering
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applications. Although low accuracy can be compro-
mised for faster computation in control applications,
this may not be acceptable in the modeling of
many other engineering systems. Any system the-
ory should be able to provide e�cient means for
model building as well as decision making (con-
trol) of the system involved [15]. In this sense,
fuzzy modeling of engineering systems seems
to be lagging behind fuzzy control, even though
many engineering applications can be fuzzy mod-
eled if a high level of accuracy and reliability can
be achieved.

1.1. Major di�culties in fuzzy modeling

To construct a new fuzzy model for a given system,
engineers usually face the following questions:
(1) How to de�ne membership functions? How to de-

scribe a given variable by linguistic terms? How
to de�ne each linguistic term within its universe
of discourse and membership function, and how
to determine the best shape for each of these
functions?

(2) How to obtain the fuzzy rule base? In modeling
many engineering problems, usually, nobody has
su�cient experience to provide a comprehensive
knowledge base for a complex system that cannot
be modeled physically, and where experimental
observations are insu�cient for statistical mod-
eling. Moreover, human experience is debatable
and almost impossible to be veri�ed absolutely.

(3) What are the best expressions for performing
union and intersection operations? In other words,
which particular function of the t-norms and
s-norms should be used for a particular inference.

(4) What is the best defuzzi�cation technique for a
given problem?

(5) How to reduce computational e�ort in operating
with fuzzy sets, which are normally much slower
than operating with crisp numbers?

(6) How to improve computational accuracy of the
model? Being fuzzy does not necessarily mean in-
accurate. At least, accuracy should be acceptable
by the nature of the engineering problem.

Many of the above issues were pointed out by
Zimmermann [24] as areas where urgent empirical
research is needed. In particular, the assumption that
membership functions “are given” and the fact that

“excessively voluminous” computational e�ort is
needed for any large complex problem, remain the
major challenges for the application of fuzzy theory.
Selection of optimum membership functions and

deduction of rules from observed data can be im-
plicitly carried out using arti�cial neural networks,
which can adaptively adjust membership functions
and �ne-tune rules to achieve better performance.
This has resulted in many Neuro-Fuzzy approaches
[9,10,19]. This approach, however, does not con-
tribute much to the development of fuzzy logic.
Moreover, neural network methods are still prema-
ture and su�er from the same disadvantages of fuzzy
logic, as mentioned above. For example, the selection
of the number of processing nodes, the number of
layers, and the interconnections among these nodes
and layers, is still an art and lacks systematic pro-
cedures [13]. Therefore, it would be more appropri-
ate to address these questions in the framework of
fuzzy logic, rather than to transform them to another
�eld.
The subject of “�ne-tuning of fuzzy models” has

been addressed by many researchers. Gurocak and
Lazaro [5] assumed that fuzzy rules and initial shapes
of membership functions are given. They used a
Hooke–Jeeves optimization algorithm to adjust the
location of each membership function in order to
minimize inference error. They pointed out that per-
formance of this method depends very much on
the initial condition of the rule base to be tuned.
Shimojima et al. [17] observed that even if �ne tun-
ing is conducted using an adaptive neural network
approach, a solution may converge to a local mini-
mum. On the other hand, the problem of selecting the
best mathematical representation of logical union and
intersection operations is more theoretical and was
not given much attention by empirical studies, even
though the axiomatic structure of fuzzy sets [4,8]
allows for a large class of equally valid t-norms and
s-norms to be implemented.

1.2. Objectives of the present algorithm

The purpose of this paper is to tackle most of the
above issues all in one pass, by providing a system-
atic procedure for the construction of fuzzy models.
The algorithm presented in this paper can be viewed
on one hand as an extension and improvement on the
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�ne-tuning approaches in [5,17]. On the other hand,
it can be viewed as a surface-�tting technique, where
huge computational power is used to �t experimental
data over a very complex hyperspace of very large di-
mension. It can also be viewed as an explicit formu-
lation of what is otherwise implicit in the adaptation
process of a back-propagation neural network. How-
ever, the main objectives of the algorithm are:
(1) Automatic generation of fuzzy rules that are not

biased by human factors or context-dependent
experience.

(2) Provision of clear physical meaning of each lin-
guistic term or fuzzy set without any a priori
knowledge about the system.

(3) Establishment of clear systematic procedure for
constructing a fuzzy model, where trial and error
is minimized.

Membership functions, which are not known
a priori, are de�ned parametrically. The exact value
of each of the parameters, and the corresponding
optimum fuzzy rules, are then deduced by the pro-
gram from given experimental observations. To avoid
entrapment in a local minimum, a random search al-
gorithm is used to �nd a global minimum zone before
the Hooke–Jeeves search method attempts to achieve
the actual minimum. Similarly, logical operations are
also represented parametrically, and an algorithm to
search for the optimum parameter is used to select
the most compatible mathematical representation of
logical operations.
Hence, once a reasonable defuzzi�cation method is

employed, the program is able to select and de�ne all
membership functions, deduce all relevant rules, and
identify the most appropriate logical operations. The
selection criterion is to obtain the best accuracy in
back-deduction of observation from which the model
has been derived. Once such a model is constructed,
many hardware and software approaches can be im-
plemented to achieve high computational e�ciency.
Although the present study uses a super-computer
with 4096 parallel processors, this is required only
during the model building stage. Implementations
of the derived models can be made very fast for
practical applications on a personal computer. Cur-
rent advances in computing speed, development of
fuzzy computers, and fast software techniques, e.g.
table-lookup, can be used to improve computational
e�ciency for practical purposes [18].

2. The methodology for fuzzy modeling

Finding the state of an engineering system, X , is
the objective of any model, and can be implicitly
expressed as

X i = f(X ;X ′;X ′′; : : :); X i ∈<; i = [1 : : : n]
for n interdependent variables, X i; 1 where X ′ and
X ′′ are the �rst and second time derivatives of the
state vectors, respectively. Generally, function f is
very complex for most engineering systems such
that it cannot be deducted purely by physical mod-
eling. Moreover, the size of the vector X ; n, can be
excessively large and prohibit thorough experimental
investigation and production of useful empirical for-
mulations. On the other hand, even when a physical
or statistical model does exist (for a relatively simple
problem or after many simplifying assumptions), the
nature of the variables in the model and the methods
of measuring them may make it di�cult to quantify
them precisely. Therefore, fuzzy modeling of the sys-
tem becomes advantageous. In this case, function f is
replaced by a relation R that describes the fuzzy rules.
For this type of large-scale complex problems, it is
unrealistic to expect the existence of a single expert,
or a small group of experts, who can provide unbiased
valid rules or even a universally acceptable de�nition
of various linguistic terms. Therefore, we will gen-
erate all rules and de�nitions based on experimental
observations without reliance on human experience.
When the interaction among input system variables

is low, it is possible to represent the above-mentioned
system as a multiple-input–multiple-output system
correlating a number of independent variables Y ∈X
to a number of dependent variables Z ∈X via a set
of ‘ fuzzy rules of the form

Y 1j ∩ Y 2j ∩ · · · ∩ Ymj ⇒ Zm+1j ∩ Zm+2j ∩ · · · ∩ Znj ; (1)
where j= [1 : : : ‘]. This model can be further simpli-
�ed into (n−m) multiple-input–single-output models
by transforming Eq. (1) to the form

n⋂
k=m+1

(Y 1j ∩ Y 2j ∩ · · · ∩ Ymj ⇒ Zkj ); (2)

1 Superscripts are used as indices, not exponents, unless other-
wise indicated.
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or the more compact form of the fuzzy rule base

R =
‘⋃
j=1

n⋂
k=m+1

(
m⋂
r=1

Y rj ⇒ Zkj

)
(3)

which is to be used in this study.

2.1. De�nition of membership functions

A fuzzy variable X i can be de�ned by the quadruple
[3,24]

(x; U;T(x);M(x))i ; (4)

where the label ‘x’ is a text expression in natural lan-
guage that expresses the name of the variable. The uni-
verse of discourseU ≡ [UL; UU] de�nes the interval of
real values that X i can belong to, where X i ∈U . Alter-
natively, a fuzzy variable can be expressed in terms of
its degree of belonging to a set of linguistic terms that
is de�ned by the term set T(x). For practical purposes
a minimum of three linguistic terms is required, while
using more than ten linguistic terms can be confus-
ing in normal human contexts. It is also recommended
that the number of terms should be odd, in order to
represent the “middle” or “medium” state. Therefore,
a reasonable number of linguistic terms can be 3, 5,
7, or 9. The user of the program can choose any num-
ber of linguistic terms from 3 to 9, but �ve is consid-
ered the most reasonable and is used by default (for
example: very low, low, medium, high, very high).
The transformation from crisp numbers to linguistic
terms is conducted by the set of membership functions
M(x). The fuzzi�cation of a variable is the mapping
of its values from U to T using the membership func-
tionsM . A certain linguistic term T is (x); s= [1; nt], is
de�ned by the triple

(t; S; P)is; (5)

where ‘t’ is the text label of the term, S ≡ [SL; SU];
S ⊆U , is its support subset, and P is the set of param-
eters de�ning its membership function �is(x). In the
present work, membership functions are generically

de�ned as

�T(y) =




0; y =∈ S
1
2

(
y − SL
a− SL

)e
; y∈ [SL; a]

1− 1
2

(
b− y
b− a

)e
; y∈ [a; b]

1; y∈ [b; c]

1− 1
2

(
y − c
d− c

)e
; y∈ [c; d]

1
2

(
SU − y
SU − d

)e
; y∈ [d; SU]

(6)

in terms of a set of parameters P= {a; b; c; d; e}.
Expression (6) is very general and can describe a

large class of shape variations, as shown in Fig. 1, if
the ordered set {SL; a; b; c; d; SU} and the exponent e
are given. The form in Eq. (6) will be called a mold.
By adjusting the seven parameters in {S; P} one can
cast any linguistic term into the corresponding mold.
A linguistic term can have a fully de�ned mem-

bership function, if the seven parameters above are
known. Therefore, for a given system involving n vari-
ables, we can identify m-independent variables, and
(n−m)-dependent variables, which can be de-coupled
and solved as (n − m) multiple-input–single-output
systems. Each variable can be described as belong-
ing to a number of linguistic terms, nt . Each term, in
turn, is de�ned using seven parameters. Therefore, the
problem of membership functions de�nition reduces
to that of �nding the best

N = 7
n∑
i=1

nit (7)

parameters. For example, for a problem involving ten
variables where each variable is described by �ve lin-
guistic terms, a total of 350 parameters (10 variables
×5 terms×7 mold parameters) need to be identi�ed.

2.2. Selection of logical operations

Zadeh [23] suggested that the intersection (AND)
operation can be expressed in terms of the min.-
operator or by the algebraic product, while the union
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Fig. 1. De�nition of membership functions. (a) Generalized membership function (mold). (b) Typical symmetric membership functions.
(c) Typical unsymmetric membership functions.

(OR) operation can be expressed by max.-operator or
the algebraic sum

�A∩B = min(�A; �B); �A∪B = max(�A; �B): (8)

Bellman and Giertz [2] provided the axiomatic struc-
ture for fuzzy set operations, which resulted in a
class of t- and s-norms for intersection and union,
respectively. Consequently, other authors proposed
alternative operations; all of them conform with the
axioms and belong to t- and s-norms [4,6,22,24]. As
each operation can yield di�erent numeric values of
membership, selection of the logical operational forms
can a�ect the performance of the fuzzy model; yet, the
most appropriate representation is not known a priori
and has to be determined by an empirical approach.
Similar to our membership function representation,

logic operations are also described parametrically, and
are based on the “fuzzy” operations given by Werners
[20]

�A∩B =  min(�A; �B) +
1− 
2
(�A + �B)

and

�A∪B =  max(�A; �B) +
1− 
2
(�A + �B); (9)

where  is a parameter to be determined empirically. If
=1, Eq. (9) becomes identical to Eq. (8); while when
=0, both union and intersection operations become
equal, indicating a complete fuzziness. Any operation
that belongs to the t- or s-norms exists somewhere
between these two extremes. Therefore, selection of
the proper value for  corresponds to selection of the
best representation of logical operations. A separate
optimization algorithm is used to �nd the value of that
parameter. Yet, for all problems solved by the present
algorithm,  always converged to 1, i.e. the Zadeh
representation. Therefore, Eq. (8) is justi�ed as a good
representation of logic operations from an empirical
point of view.

2.3. Defuzzi�cation

Fuzzi�cation of crisp numbers to linguistic terms is
clearly de�ned, but defuzzi�cation from fuzzy terms
to crisp numbers is not. The most accurate method
is probably the center of area method (COAM),
which obtains the center of the area under the �-cut
zone. However, this method is slow, and poses some
doubts when overlapping zones exist. An alternative
method, which o�ers the best performance in terms of
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computational speed, continuity, dis-ambiguity, plau-
sibility, and weight counting [3] is the weighted height
method (WHM). In this method, the peak of each term
(usually the 1.0-cut) is multiplied by its weight (its
�) and a weighted average is obtained. However, as
can be seen from Fig. 2, WHM is insensitive to the
particular shape of the membership function, and can
become erroneous when the membership function is
highly un-symmetric.
A modi�cation to the WHM, called the weighted

sections method (WSM), is used here. It uses the
value of the nucleus of the �-cut and multiplies it
by the membership value � for each term, and then
obtains a weighted average of all terms. As can be
seen from Fig. 2, this method is more sensitive to
un-symmetric membership functions and can produce
better results than the WHM without much addi-
tional computational e�ort. It can also be seen that
the WSM always produces defuzzi�cation values that
are bounded between those obtained by the COAM
and WHM. Therefore, the WSM provides a better
compromise between computational accuracy and
time, and is adopted as the standard defuzzi�cation
procedure in the present study.

2.4. Optimization criteria

As can be seen from the previous discussion, fuzzy
modeling of a system can be viewed as a problem of

Fig. 2. Comparison among COA, WH, and WS methods of defuzzi�cation.

optimal selection of the N parameters in Eq. (7). The
criterion for selection of these parameters has to be de-
�ned. There is an obvious requirement that any model
should satisfy: It should be able to reproduce the orig-
inal data from which it was obtained, and upon which
it was designed, with minimum error. For example, a
given database of M experimental observations, each
de�ned by the state vector X ≡Y ∩ Z , can be trans-
formed into a fuzzy rule base of the form in Eq. (3). If
the membership functions and parameter  used in the
transformation are true representations of the physical
and linguistic nature of the problem, then for given
antecedents Y , the rule base R should predict conse-
quents Z ′ such that:

∀X : �(Z − Z ′) = e→ 0; (10)

where e is a small positive number that approaches
zero in the limit after a large number of optimization
iterations. There are many measures of the function �
that can be used such as
• Average absolute error

� =
1
M

M∑
j=1

abs(Z j − Z ′j)
Z j

: (11)

• Deviation of error

� =

√√√√ 1
M

M∑
j=1

(
(Z j − Z ′j)

Z j

)2
: (12)
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• Speci�c entropy [9,10]

E =
� ∩@�
� ∪@� ; (13)

where entropy, E, can be understood as a measure
of the degree of uncertainty or fuzziness of a certain
fuzzy rule, the degree of inability to justify the sound-
ness of a given argument. Therefore, entropy is zero at
the two Boolean states �=0 and 1, and is unity at the
intermediate, completely fuzzy state, �=0:5. Clearly,
the more deterministic the rules, the more valid they
are. Thus pushing the possibility of a rule away from
the 0.5 zone towards one of the (0; 1) limits is rec-
ommended. Therefore, if the entropy of every rule is
minimized, we should expect the rule base to perform
a better system modeling and yield more accurate pre-
dictions. A weaker formulation requires that the total
entropy of the rule base be minimized; then, for most
of the inference situations the rule base will yield ac-
ceptable inferences. Only when entropy of the whole
rule base is zero, then predictions of the rule base for
the fuzzy model will become exact and would per-
fectly match experimental observations.
For a large number of independent variables, how-

ever, the size of the rule base, R in Eq. (3), can be
huge. In the absence of complete information about
the system, it is reasonable to expect that most of
the rules in R will have zero possibility, and partially
sound rules will occupy few localized zones of the
R-space. Therefore, it is better to de�ne a kernel, �,
that is a subset of R containing only those rules that
are partially sound,

� = R ∩@∅: (14)

Therefore, it is possible to de�ne the speci�c entropy
of a rule base as

� =
∑

� E
card(�)

; (15)

where card(�) equals the number of partially sound
rules. Since � is a property of the rule base only and
its evaluation does not require performing any infer-
ences, it is much easier and computationally faster
to evaluate than � or �. In all problems solved us-
ing the present algorithm, we found that minimization
of the error measures � or �, always, results in min-
imization of the speci�c entropy � of the rule base.
Therefore, minimization of speci�c entropy can also

be used as a criterion for the optimization of the fuzzy
model.
There are at least two ways for minimizing the spe-

ci�c entropy de�ned by Eq. (15)
(1) by concentration of rules, or
(2) by di�usion of entropy.
Rules can be made more deterministic, thus reducing
total entropy while keeping the number of rules more
or less the same. Moreover, increasing the number of
sound rules, without signi�cant reduction in the fuzz-
iness of each rule will also result in a lower speci�c
entropy. The �rst mechanism will result in reducing
inference error and improves performance of the sys-
tem, but the second one may increase the inference
error and render the whole system redundant. Our
empirical research shows that minimizing speci�c
entropy can sometimes increase error while mini-
mization of error will always result in lower speci�c
entropy. Therefore, minimization of speci�c entropy
of the rule base is a necessary but not su�cient
condition for the optimum design of a fuzzy model.

2.5. The full algorithm

The algorithm described in this paper was devel-
oped in two versions. The �rst version was imple-
mented using Turbo Pascal for Windows and runs on
a PC. For a Pentium 166MHz processor with 8Mbytes
free RAM, this program is capable of optimizing mod-
els with up to nine variables, and up to �ve linguistic
terms for each variable. Computational time increases
exponentially with the number of variables involved,
and increases more or less linearly with increase in
the number of linguistic terms and data points in the
input database. For the typical engineering problems
studied using this program, computational time ranged
from 50 to 200 CPU h.
The second version was implemented on a Con-

nection Machine CM5 computer, and was written
in C∗ – a data-parallel dialect of standard C. The
CM5 machine used consists of 128 processing nodes.
Each node contains four vector processors, and each
processor contains 8 Mbytes RAM and eight pipeline
processors. Therefore, the machine available was ca-
pable of delivering a peak performance of 20Gops
and 4Gbyte of RAM. For the typical problems imple-
mented on this program, optimization time was from
5 to 50 CPUh. Clearly, the optimization algorithm
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is, computationally, very exhaustive. However, it is
important to note that this program is usually run only
once in the lifetime of a model. Once the optimum
design is reached, actual computations can be con-
ducted very e�ciently on a PC or a programmable
calculator. The improvement in model accuracy is
found to justify the initial e�ort, as will be shown
later. The high demand of CPU time and memory
stems from the need for frequent re-construction of
the rule base. For n variables with nt linguistic terms
for each variable, the rule base, R in Eq. (3), is an
n-dimensional relation whose size is

card(R) =
n∏
i=1

nit : (16)

For the present hardware con�guration, this size
should not exceed 128 million rules. This huge num-
ber of rules can be reached, in principle, with 17
variables, three linguistic terms each, or with nine
variables and up to nine linguistic terms each; other
combinations are also possible. Again, the ability to
systematically model a 17-variables system can jus-
tify the initial overhead of the optimization process.
To sum up the information from the previous sec-

tions, a ow chart of the algorithm is shown in Fig. 3
and is described below:
• The number of variables as well as the universe
of discourse of each variable are dictated by the
physical nature of the problem, but the number of
linguistic terms for each variable needs to be cho-
sen. Quite often the number of linguistic terms is
known from experience about the system. How-
ever, if this is not the case, �ve or seven linguistic
terms would be adequate for most practical cases.

• Each linguistic term is de�ned by its interval and
the �ve parameters a; b; c; d, and e, as shown
in Eq. (5) and Fig. 1. Therefore, for the com-
plete model, N parameters need to be identi�ed
(Eq. (7)). Furthermore, the parameter  for logic
operations (Eq. (9)) needs to be selected. The
selection criterion is to minimize the errors �,
� or speci�c entropy, �, de�ned by Eqs. (10)–
(15). Therefore, model construction becomes that
of optimization of the objective function over
an N +1 space, which can be signi�cantly large
because of the large number of variables and lin-
guistic terms involved. However, the problem is
still a standard multi-dimensional optimization.

• The program starts by selecting initial values for
the N +1 parameters, which make the starting point
in the space where the global minimum needs to be
found. Although an intelligent guess of the initial
state may expedite convergence, such a guess is not
necessary. TheN +1 parameters can be supplied by
a random number generator. During various stages
of execution, the program will check these values
to ensure that they make sense. For example, one
obvious requirement is that

UL6 SL6 a¡b¡c¡d6 SU6UU: (17)

This and other constraints are examined to ensure
that the input model complies with the de�nitions
given in Eqs. (1)–(17). When the random numbers
do not satisfy the model, the algorithm has various
strategies for automatic adjustment of the numbers
in order to match the model.

• For a given N +1 parameters, the program then
constructs the complete model, i.e. de�nes all mem-
bership functions, the fuzzi�er algorithm, the logi-
cal operators, and the defuzzi�er.

• Each crisp value for each variable in an exper-
imental record from the database is fuzzi�ed
according to Eqs. (5) and (6) and Fig. 1, and
transformed into its equivalent linguistic form.
Each possible combination of linguistic statements
results in a single rule such as that in Eq. (1)
or (2). Since a single crisp number may belong
to more than one linguistic term, each data record
can be transformed into a large number of rules,
with each rule having a partial possibility. The
maximum number of rules generated can be very
large (Eq. (16)). For example, for n variables, each
having partial membership to two linguistic terms,
there could be up to 2n rules generated from one
data record. However, in practice a much smaller
number will be generated.

• The above step is repeated for each record in the
database. Rules are then assembled by union opera-
tions. The result is the construction of the fuzzy rule
base, R in Eq. (3). Clearly, many rules will be de-
duced from various data records, and many of them
will be repetitive. Only a small kernel of R will con-
tain possible rules. The union operation ensures that
the possibility of a rule can only increase when this
rule is further deduced from many data records.
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Fig. 3. Flow chart of the optimization algorithm.

• Consequently, all rules can be deduced from experi-
mental observations without reliance on any human
expert to provide the rules. Moreover, a complete
inference engine has been constructed.

• Using the above inference engine and the input
(antecedent) data from the database, re-prediction
of the data can be done by fuzzifying them,
inferring the consequent (output), and defuzzi-
fying this output to produce the model’s predic-
tion. Ideally, the model should predict exactly
the data that have been used for its construction.
If not, the error in inference should be mini-
mized according to a certain criterion from Eqs.
(10)–(15).

• The function of the optimizer is to modify the model
by changing the N +1 parameters in order to min-
imize the inference error or entropy. The optimizer

keeps adjusting the model until the criterion is
satis�ed.

• A major problem that was reported by many
research workers [5,17] is the entrapment in a local
minimum and failure to improve the performance
of the model. This problem is solved in the present
algorithm where the optimizer performs three op-
timization tasks that ensure convergence to the
global minimum, as shown in Fig. 4:
(A) Random optimization: Searching randomly in

all directions within the (N +1)-dimensional
space and checking with the objective func-
tion.When a lower value is obtained, that point
is used as a new base for the random search.
This technique is very successful in �nding the
global minimum “zone” quickly. For a typ-
ical problem involving 150-dimensions, the
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Fig. 4. The optimization algorithm.

random search was able to reduce inference
error to 10% of its initial value in less than
2000 steps.

(B) After reaching the global minimum zone, a
systematic Hooke–Jeeves search algorithm is
used to �nd the global minimum. This search
algorithm is very time consuming and requires
many function evaluations at each step. How-
ever, when the random search ends somewhere
near the global minimum, the H–J algorithm
slides towards the global point very quickly
and few search moves need to be done.

(C) The search for optimum  value is conducted
in parallel with the previous stages, using a
golden-sections optimization algorithm.

3. Examples

3.1. A model for residual stresses induced
by grinding

Grinding is one of the most complex manufac-
turing engineering problems, which involves a large
number of variables and physical processes that are
non-linear and interdependent. Moreover, many vari-
ables have no precise numeric values, e.g. grit size or
wheel grade. Therefore, grinding has been for decades
a very di�cult area for physical modeling or experi-
mental investigations. Quality grinding still depends
to a great extent on skilled machine operators who

use rules-of-thumb based on many years of trial-and-
error experience. However, modern complex surface
requirements, such as induced residual stresses, are
beyond everyday experience of skilled operators.
Then, there is a need to generate fuzzy rules from ex-
perimental observation alone. Therefore, grinding is a
process that can bene�t greatly from fuzzy modeling
using the present algorithm.
The process can be modeled by the implicit form

S = f(T;W;D);

where T , table speed, W , wheel speed, and D, depth
of cut, are the major independent variables a�ecting
the output S, residual stresses. There exist over twenty
other variables that have lower partial e�ects on S
and over 50 other parameters a�ecting S marginally
[1]. Therefore, many variables a�ect the function f,
and many of them are di�cult to precisely quantify.
Attempt to construct a general physical model of this
system is not possible, because it is hard to account for
all these variables even if precise measuring methods
were available. Some empirical modeling may result
in a simpler formula such as

S = f(H) = k · Hn; where H =
T · D
W

(18)

which is obviously very coarse, has a limited applica-
bility, and often leads to contradicting results. More-
over, experimental work can be very expensive and
time consuming which makes reliable experimental
observations very scarce. Experimental data for the
present example are based on those reported in [14].
The algorithm described in the previous sections

accepts a text �le as an input, see Fig. 5. Each line
marked with “∗∗” de�nes a variable in terms of its
name, the universe of discourse, and the number of
linguistic terms used in describing this variable. Each
variable is followed by the de�nition of its linguistic
terms, marked with “∗”. Each term is de�ned by its text
label, the supporting subset, and the �ve parameters
de�ning the shape of its membership function. This
simple �le format describes to the program the initial
N parameters de�ning the various linguistic terms. It
also provides the database from which an initial rule
base is constructed. The program keeps searching for
a better set of N + 1 parameters as shown in Fig. 3
and described previously. A comparison between the
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Fig. 5. The input �le to the program.

original model provided by the user and the �nal
model provided by the program is shown in Fig. 6.
Table 1 lists the rules generated by the program

for both the un-optimized and the optimized models.
Table 2 shows a comparison of inference accuracy
among the three approaches: least-square data �tting
according to Eq. (18), the original un-optimized model
given by the user, and the optimized model gener-
ated by the program. The superiority of the optimized
model is clearly demonstrated by a great reduction in
the inference error as well as the speci�c entropy of
the rule base. The product of the model is a true repre-
sentation of membership functions, for each linguistic
term, and the most robust and accurate set of fuzzy
rules.

3.1.1. Discussion
Considering the membership functions, rules, and

results shown in Fig. 6 and Tables 1 and 2, we can
make the following observations:
• The common usage of triangular membership func-
tions is not justi�able. Optimum membership func-
tions can be un-symmetric, non-linear, and even
discontinuous in shape. Some functions have in-
teresting shapes with characteristics signi�cantly
di�erent from the triangular shape. For example,
Var T : medium or high, and Var D: low or high,

show clear un-symmetric or non-linear discontinu-
ous shapes.

• Multiple overlapping of membership functions is
possible. For example (Var W =12) or (Var S =0)
can be viewed as medium, high or very high.

• The program not only changes the shape of mem-
bership functions, but also relocates the position of
each linguistic term in order to �t various rules and
avoid redundancy in utilization of any term.

• Although these functions seem complex, in practi-
cal applications computational techniques, such as
table-lookup, are always implemented and the com-
plexity of the membership function has no e�ect on
the on-line performance of the inference engine.

• The optimized model resulted in a reduction in
speci�c entropy which is consistent with the model
requirements. Entropy was reduced by both the
mechanisms of rule concentration (by reducing the
number of active rules from 28 to 24) and entropy
dilution (by generating more deterministic rules
with higher possibility weights).

• The set of rules after optimization is signi�cantly
di�erent from the original one. By rede�ning mem-
bership functions, the program was able to �nd a
completely new set of rules that are more compati-
ble with experimental observations.

• The problem of entrapment in a local minimum has
been avoided by performing a quick random search
before going to the standard Hooke–Jeeves search
algorithm.

• Averages of absolutes and squares of inference
error have been dramatically reduced. Although
the initial un-optimized model performs better than
the curve-�t formula in Eq. (18), the performance
after optimization is much superior to both. The
inference error obtained by the �nal fuzzy model
is almost negligible compared with the other two.

3.2. A fuzzy model for the Australian �nancial
market (ASX-SPI)

The Australian �nancial market is a small market
representing less than 2% of the global market. Per-
formance of the Australian market is measured by the
All Ordinates Index which is a weighted average of
major companies registered at the Australian Stock
Exchange (ASX). One of the most important �nan-
cial derivatives is the Share Price Index (SPI) which
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Fig. 6. Membership functions before and after optimization.

is almost identical to the All Ordinates Index. There-
fore, the ability to model the ASX-SPI has both a
commercial value on its own as well as an importance
as a measure of the performance of the Australian
economy.
There are two major approaches to the modeling of

a �nancial product:
(1) Fundamental analysis, which assumes that the

price of a �nancial product is determined by its

fundamental value and the expected earnings.
For the ASX-SPI factors such as Gross Domestic
Product (GDP), productivity, revenues, unem-
ployment, Consumer Price Index (CPI, ination),
interest & exchange rates, etc. are considered
most important [7]. Unfortunately, fundamental
analysis does not take into account such factors
as human fear, greed, and panic which are fuzzy
in nature. The ASX-SPI lost more than 40% of its
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Table 1
Comparison between rule bases before and after optimization

IF Var T and Var W and Var D Then Var S Weight

Un-optimized rules
1 Very low Very high High Medium 0.094
2 Very low High High Medium 0.094
3 Very low Very high Medium Medium 0.094
4 Very low High Medium Medium 0.094
5 Very low Very high Low Medium 0.062
6 Very low High Low Medium 0.062
7 High Very high Very low Medium 0.347
8 Medium Very high Very low Medium 0.422
9 Low Very high Very low Medium 0.250
10 Very low Very high Very low Medium 0.422
11 High High Very low Medium 0.347
12 Medium High Very low Medium 0.469
13 Low High Very low Medium 0.250
14 Very low High Very low Medium 0.531
15 Very low Very high High Low 0.422
16 Very low High High Low 0.622
17 Very low Very high Medium Low 0.422
18 Very low High Medium Low 0.628
19 Very low Very high Low Low 0.422
20 Very low High Low Low 0.629
21 High Very high Very low Low 0.347
22 Medium Very high Very low Low 0.422
23 Low Very high Very low Low 0.422
24 Very low Very high Very low Low 0.422
25 High High Very low Low 0.347
26 Medium High Very low Low 0.781
27 Low High Very low Low 0.854
28 Very low High Very low Low 0.854

Optimized rules
1 Very high Very high Medium High 0.161
2 High Very high Medium High 0.361
3 Very high Very high Low High 0.161
4 High Very high Low High 0.485
5 Low Very high Low High 0.024
6 Very low Very high Low High 0.074
7 Low Very high Very low High 0.024
8 Very low Very high Very low High 0.525
9 Low Very high Very high Medium 0.024
10 Very low Very high Very high Medium 0.653
11 Low Very high High Medium 0.024
12 Very low Very high High Medium 0.943
13 Very high Very high Medium Medium 0.161
14 High Very high Medium Medium 0.361
15 Medium Very high Medium Medium 0.361
16 Low Very high Medium Medium 0.024
17 Very low Very high Medium Medium 0.716
18 Very high Very high Low Medium 0.161
19 High Very high Low Medium 0.652
20 Medium Very high Low Medium 0.709
21 Low Very high Low Medium 0.024
22 Very low Very high Low Medium 0.747
23 Low Very high Very low Medium 0.024
24 Very low Very high Very low Medium 0.525
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Table 2
Comparison between actual experimental observation, prediction of formula produced by curve �tting, the un-optimized fuzzy model given
by the user, and the optimized model produced by the program

T W D S

Actual Curve �tting Un-optimized fuzzy Optimized fuzzy

1 1 19.3 100 −230 −262 −246:6 −229:99
2 1 19.3 500 −350 −299 −246:6 −349:76
3 1 19.3 2000 −380 −330 −348:1 −379:51
4 4 19.3 500 −320 −330 −309:4 −319:99
5 1 19.3 3000 −370 −340 −348 −370:03
6 6 19.3 500 −250 −340 −250 −250:02
Rules k =−224 28 24
Speci�c entropy n=−52 0.477 0.322
Average error 14.8% 9.07% 0.037
Average deviation 18% 13.18% 0.06%

value during the Black Monday crash of October
1987 for no obvious fundamental reason.

(2) Technical analysis, which assumes that all in-
formation about the price of a �nancial product
is stored in its present and previous price his-
tories. Fluctuations in prices are thought to be
random in nature and various statistical tech-
niques are used to model the market, e.g. time
series analysis, correlation, Monte Carlo method,
fractals, non-linear partial di�erential equa-
tions such as Black–Scholes equation, and neu-
ral networks, among many other approaches
[7,16,21]. All these approaches assume the
existence of a probabilistic variable called
“market volatility”. Combined with other
market theories such as e�cient market hy-
pothesis and arbitrage [21], volatility ensures
that it is impossible, in principle to predict
the market with absolute accuracy. There is
a certain amount of uncertainty, fuzziness,
or minimum entropy that must exist as a
fundamental variable in the market.

In this example, we postulate that market volatility
is a possibility not a probability, and therefore fuzzy
modelling can be better than statistical approaches.
To do so, daily historic data for various �nancial
variables and indicators have been collected for the
period from 1971 to 1996. Correlation analysis was
conducted on these data series to �nd which variables

are more inuential on the ASX-SPI. It was found
that the ASX-SPI has good correlation with six vari-
ables: (1) Standard and Poor’s S+P500 index, or
the very similar Dow Jones index, as an indicator
of the American economy; (2) The Hang Seng in-
dex of Hong Kong, as an indicator of the Asian
economy; (3) The US treasury bonds or bills, as
a measure of interest rates and direction of global
capital ow; (4) gold price index; (5) wheat price
index; and (6) live cattle price index. The ASX-SPI
was found to be not correlated with the Japanese
Nikkei, unemployment rates, CPI, interest rates, cur-
rency exchange rates, or crude oil prices. This is
compatible with the nature of the Australian econ-
omy which is linked to the US and Asian mar-
kets, and whose main earnings are driven from
exports in mining (e.g. gold), agriculture (e.g. wheat)
and farming (e.g. live cattle).
To avoid numerical bias, the ASX-SPI as well as

the six independent variables above were normalized
to a value equal to 100% on 15 April 1994. Average
weekly values for the period to 18 January 1996 were
used to provide the data base for the program and
are shown in Fig. 7. The starting point was to de�ne
every �nancial variable using three linguistic terms
as shown in Fig. 8. This construction resulted in an
average error of 6.15% which is a very large error that
corresponds to either a small market crash or a huge
bull market.
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Fig. 7. Historical data for variables a�ecting the ASX-SPI, normalized to 100% value on April 1994.

Fig. 8. Original de�nitions of membership functions for the ASX-SPI model.

Daily uctuations in the ASX-SPI can be around
± 1% while a± 2% is considered a nervous trading. A
weekly uctuation of ± 2% is not uncommon while a
weekly change of more than ± 3% represents an obvi-
ous trend. Therefore, it seems that for a medium-term
market trader (a hedger), ± 2% error in modeling the
market is just as best as can be achieved, given average
market volatility. When, the above model was given to
the algorithm presented in this paper, and after 30 CPU
hours on CM5, the model in Fig. 9 was obtained.

The membership functions produced by the algo-
rithm look strange in shape and uncommon. Yet, they
were able to reduce the average error to only 2:44%.
Various observations from the discussion in the
previous example apply for this example as well.
One di�erence is that for the present example entropy
minimization has been achieved primarily by entropy
di�usion and the number of valid rules has increased
from 218 to 486 rules. This is expected due to the
inherent fuzzy nature of the system.
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Fig. 9. Optimized de�nitions of membership functions for the ASX-SPI model.

4. Conclusions

A methodology for fuzzy modeling of engineer-
ing systems has been proposed. The program de-
veloped operates on a given set of experimental
observations without any other a priori informa-
tion. The algorithm searches for the optimum con-
�guration of membership functions, deduces the

corresponding rule base such that a measure of back-
inference error is minimized, without entrapment in
a local minimum. Using this algorithm, fuzzy mod-
eling of engineering systems can be constructed with
a high inference accuracy and without reliance on
human experience. We hope that this approach may
improve the position of fuzzy modeling methods
into a more deterministic form that engineers desire.
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The approach is equally valid for designing control
systems.
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