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Abstract

This paper uses an orthotropic shell model to investigate in detail the long axial wavelength circumferential vibration of microtubules

(MTs). The deformation patterns in the vibrations were explored and their phonon dispersion relations were presented for MTs with

increasing radius. It was shown that with the growth of the axial wavelength, the associated frequency of MTs would finally approach a

nonzero asymptotic value, rising considerably with the increase of circumferential wave number but dropping linearly with the growing

radius. This study corrects the previous misunderstanding drawn by an oversimplified model, and points out that a parabolic dispersion

law does not apply to the circumferential modes when the MT bending stiffness is properly considered.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Hollow cylindrical microtubules (MTs) composed of
tubulin heterodimers are one of the principal components
of eukaryotic cytoskeleton, and play an essential role in
providing mechanical rigidity, maintaining the shape of
cells and facilitating many physiological processes (Ingber
et al., 1995; Volokh et al., 2000; Nogales, 2000; Howard,
2001; Howard and Hyman, 2003; Stamenovic, 2005;
Watanabe et al., 2005). The functions of MTs depend
crucially on their mechanical properties. Thus the me-
chanics of MTs has become a subject of primary interest in
recent research (Gittes et al., 1993; Venier et al., 1994;
Kurachi et al., 1995; Felgner et al., 1996; Wang et al.,
2001). Specifically, the vibration of MTs has attracted
considerable attention in the last decade (Sirenko et al.,
1996; Pokorny et al., 1997; Pokorny, 2003, 2004; Kasas et
al., 2004a, b; Portet et al., 2005).

Since 1997 Pokorny et al. (1997) and Pokorny (2003,
2004) have conducted a series of studies on the longitudinal
vibration of MTs. It was shown that the excitation of the
vibration of MTs would not be extinguished by the viscous
damping of the surrounding cytosol due to the slip
e front matter r 2008 Elsevier Ltd. All rights reserved.
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boundary condition on MT surfaces (Pokorny, 2003,
2004). In 2004 Kasas et al. (2004a, b), using the finite
element method, investigated the free vibration of MTs
with radial deformation, where MTs were treated as hollow
cylinders consisting of parallel beams with weak lateral
interaction. A year later, a two-dimensional lattice model
was developed by Portet et al. (2005) for longitudinal and
transverse modes. So far, the most comprehensive study on
MT vibration has been carried out by Sirenko et al. (1996)
based on an isotropic continuum model. Possible vibration
modes, e.g., longitudinal, torsional, radial and transverse
bending vibrations, were predicted for MTs. Particularly,
an infinite set of helical waves with a parabolic dispersion
law were reported to be corresponding to the circumfer-
ential vibrations of MTs with large radial deformation. As
revealed in Kasas et al. (2004a, b), such vibrations are of
major interest because they could play a role in the
polymerization/depolymerization process of MTs, which is
essential for MT positioning, cell shape maintaining, cell
migration and division (Watanabe et al., 2005). Further-
more, as will be shown in this work the excitation of the
vibrations will lead to predominant bending of MTs along
circumferential direction, where the constituent protofila-
ments are bonded with lateral interaction that is orders of
magnitude weaker than axial interaction within protofila-
ments (Kis et al., 2002; Kasas et al., 2004a, b; Tuszynski
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et al., 2005). As a result, large deformation will occur for
MT cross-sections, which could exert significant influence
on the mechanical performance and structural integrity of
MTs. On account of these it is essential to characterize the
unique behavior of MTs in circumferential vibrations more
precisely in detail.

In previous studies of such vibrations the finite element
method (Kasas et al., 2004a, b) is unable to give the
detailed phonon dispersion relations while the isotropic
continuum model (Sirenko et al., 1996) is obviously not
adequate for highly anisotropic MTs (Kis et al., 2002;
Kasas et al., 2004a, b; Tuszynski et al., 2005). To account
for the anisotropy of MTs, an orthotropic shell model
(Wang et al., 2006a, b; Qian, et al., 2007) has been
developed with good agreement with discrete models and
experiments, but substantially different from isotropic
models. Particularly, even under the isotropic assumption,
discrepancy can be identified between the two continuum
models used in Sirenko et al. (1996) and Wang et al.
(2006a) for circumferential modes (see Fig. 2 of Wang et al.
(2006a) with n ¼ 2 and small k). Thus, in the present work
the more realistic orthotropic shell model (Wang et al.,
2006a, b) will be employed to obtain a deeper under-
standing on the circumferential modes of MTs. The
corresponding phonon dispersion relations will be derived
and the associated deformation patterns will be depicted
for MTs. In addition, the radius dependence of the MT
vibrations will also be examined in detail.
Fig. 1. The illustration of the structure of a 13-protofilament MT with the

‘bridge thickness’ of 1.1 nm (dePablo et al., 2003).
2. Analysis method

MTs are composed of parallel protofilaments built by the self-

association of a, b-tubulin dimmers (Nogales, 2000; Howard, 2001).

Head-to-tail binding of these dimmers leads to protofilaments that run

along the length of the MTs, and lateral interaction between adjacent

protofilaments complete the MT wall (Fig. 1). Typically, MTs are

constructed with 13 protofilaments. Other MTs with 8–17 protofilaments

and thus, increasing radius, are also reported (Chrétien et al., 1998; Janosi

et al., 1998).

As shown in Wang et al. (2006a, b), Qian et al. (2007), an MT can be

modeled as an orthotropic elastic shell with longitudinal Young’s modulus

Ex, circumferential Young’s modulus Ey, shear modulus Gxy and

longitudinal Poisson ratio vx. The governing equations for free vibration

of an MT are as follows (Wang et al., 2006a; Qian et al., 2007):
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Here x and y are axial and circumferential angular coordinates,

respectively, u, v and w are axial, circumferential and (inward) radial

displacements, r(E1.47 g/cm3) (Sirenko et al., 1996)) is the mass density,

and r is the average radius of MTs. In addition, ny( ¼ nx(Ey/Ex) is the

circumferential Poisson ratios, Kx ( ¼ Exh/(1�nxny)), Ky ( ¼ Eyh/(1�nxny))
and Kxy ( ¼ Gxyh) represent the in-plane stiffnesses in longitudinal and

circumferential directions, and in-plane stiffness in shear, and Dx ( ¼ Exh0
3/

12(1�nxny)), Dy ( ¼ Eyh0
3/12(1�nxny)) and Dxy ( ¼ Gxh0

3/12) denote the

bending stiffnesses in longitudinal and circumferential directions, and

bending stiffness in shear (Flugge, 1960; Zou and Foster, 1995; Li and

Chen, 2002). Here, h ( ¼ 2.7 nm) (Sirenko et al., 1996; dePablo et al., 2003)

is the equivalent thickness of MTs for the in-plane deformation while h0
( ¼ 1.6 nm) (dePablo et al., 2003) is the effective thickness for bending. For

simply supported ends the solution to (1) reads

uðx; y; tÞ ¼ U cos kx x cos ny eiot

vðx; y; tÞ ¼ V sin kxx sin ny eiot

wðx; y; tÞ ¼W sin kxx cos ny eiot
(2)

where U, V and W represent the vibration amplitudes in longitudinal,

circumferential and radial directions, respectively, kx(kx ¼ mp/L, m is the

half-axial wave number and L is the length of an MT) is the wave vector

(nm�1) along the longitudinal direction, n is the circumferential wave

number and o is the angular frequency related to frequency f by o ¼ 2pf.
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Fig. 2. The circular cross-section of MTs in transverse bending mode with

n ¼ 1 and the deformed cross-section of MTs in circumferential modes

with n ¼ 2, 3 and 4. The bending of the MT wall along circumferential

direction is primarily withstood by the inner ring with the ‘bridge

thickness’ of 1.1 nm (dePablo et al., 2003).
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Fig. 3. The dispersion curves of beam-like bending mode with n ¼ 1 and

circumferential modes with n ¼ 2–5 obtained for (a) 8-MTs (r ¼ 8.6 nm),

(b) 13-MTs (r ¼ 12.8 nm) and (c) 17-MTs (r ¼ 16 nm).
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With solution (2) Eq. (1) can be rewritten as

Hðn; k; f Þ3�3

U

V

W

2
64

3
75 ¼ 0 (3)

where the magnitude of k( ¼ rkx) is equal to the cross-section perimeter

(2pr)-to-axial wavelength (2L/m) ratio. The existence condition of a

nonzero solution of U, V and W is

det Hðn; k; f Þ3�3 ¼ 0 (4)

Solving Eq. (4) yields three eigenfrequencies for each (n, k), which gives

three different vibration modes defined by the amplitude ratios (U/W V/W

1). Following Wang et al. (2006a, b), Qian et al. (2007) the values of the

elastic constants of an MT used in the present work are Ex ¼ 1GPa,

Ey ¼ Gxy ¼ 1Mpa and nx ¼ 0.3.

3. Circumferential vibrations of microtubules

Following the procedures shown above let us study the
vibration of MTs with circumferential wave number nX1.
In view of the fact that MTs usually have large length-to-
diameter aspect ratio we shall focus on the vibration of
MTs with kp0.1, i.e., the axial wavelength ranges from 10
times as much as the perimeter of MT cross-section to
infinitely long. Our results reveal that among the three
eigenfrequencies associated with given n the lowest one
corresponds to the vibration with the radial vibration
amplitude W comparable to the circumferential amplitude
V, but much larger than the axial amplitude U. Specifically,
at n ¼ 1, W ¼ V. It can be shown by a simple mathematic
analysis that the lowest frequency with n ¼ 1 leads to the
transverse bending mode with a rigid body motion of the
circular cross-section, while those with nX2 correspond to
the circumferential modes where local bending along
circumferential direction dominates (Fig. 2).

It can be seen from Figs. 1 and 2 that the deformation
induced by the circumferential vibration is controlled by
the lateral interaction between the parallel protofilaments
that establish the MT wall. Experiments (Kis et al., 2002;
Kasas et al., 2004a, b; Tuszynski et al., 2005) confirmed
that this interaction is the weakest in the nanostructures of
MTs, measured by Gxy or Ey that are two to three orders of
magnitude lower than Ex reflecting the much stronger axial
interaction within protofilaments. Furthermore, as shown
in (dePablo et al., 2003), the circumferential bending of
MTs is largely withstood by the inner ring (Figs. 1 and 2) of
MTs with the ‘bridge thickness’ only of 1.1 nm, much
thinner than the equivalent thickness 2.7 nm for in-plane
deformation of MTs. The low elastic modulus Ey and small
equivalent thickness h0 for bending leads to low bending
stiffness Dy(pEyh0

3) of MTs, suggesting that the circumfer-
ential vibration could result in large deformation on MT
cross-sections and thus significantly affect the mechanical
performance and structural integrity of MTs.

To quantify these vibrations, their phonon dispersion
curves (n=2–5) have been calculated in Fig. 3 for 8, 13 and
17 protofilament MTs with radius growing from 8.6, 12.8,
to 16 nm. For the sake of comparison, the dispersion curve
of transverse bending mode (n ¼ 1) is also presented in Fig.
3 (dotted lines). As seen from Fig. 3, at kX0.1, all the
frequencies decrease considerably with decreasing k, i.e.,
rising axial wavelength. Further increasing axial wave-
length (i.e., decreasing k) at ko0.1, while the frequency of
transverse bending mode (n ¼ 1) decreases and goes to zero
at k ¼ 0, those of circumferential modes (n ¼ 2 to 5)
become almost independent of axial wavelength and
approaches a nonzero asymptotic value at infinite axial
wavelength (i.e., k-0). Particularly, this asymptotic value
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rises rapidly with growing circumferential wave number n

and becomes more sensitive to the change of n for thinner
MTs of smaller radius. For example, in Fig. 3, when n

varies from 2 to 5 the associated frequency of 17-
protofilament MTs (r ¼ 16 nm) rises from 18.5 to
163MHz while that of 8-protofilament MT (r ¼ 8.6 nm)
is raised from 36.7 to 322MHz. On the other hand, for any
given n the asymptotic value generally decreases with
increasing MT radius. This effect of radius turns out to be
more pronounced for the circumferential modes with larger
n. As shown in Fig. 3, when the radius grows from 8.6 to
12.8 and to 16 nm, the frequency associated with n ¼ 2 only
changes slightly from 36.5 to 24.6 and to 19.6MHz, much
less than the decrease of the frequency associated with
n ¼ 5 which reduces substantially from 320 to 215 and to
172MHz. Furthermore, detailed study shows (see Fig. 4)
that at ko0.1 the frequencies f of circumferential modes
approximately satisfy fp1/r, i.e., it increases almost
linearly with the inverse of MT radius. In addition, the
slope of the lines in Fig. 4 increases significantly with the
rising circumferential wave number n, showing again the
stronger radius dependence of the circumferential modes
with larger n.

In Fig. 3, the almost constant frequency obtained for the
circumferential modes with given n and ko0.1 suggests
that the local bending along the circumferential direction
largely determines the associated frequency of MTs when
the axial wavelength is more than an order of magnitude
larger than the perimeter of MT cross-section. This in turn
offers a physical interpretation for the insensitivity of the
vibration modes to the axial wavelength, and their strong
dependence on n and r that determine the circumferential
wavelength. Specifically, this behavior (Fig. 3 with nX2) is
qualitatively different from that of the transverse bending
mode (n ¼ 1) where bending deformation occurs along the
axial direction without circumferential deformation. It can
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Fig. 4. The radius dependence of the frequency obtained for MTs

vibrating in circumferential modes with long axial wavelength (i.e.,

ko0.1).
be shown with simple analysis that under the condition
n ¼ 1 and k-0 we have fpk2, and thus zero frequency at
infinite axial wavelength (k-0).
In contrast to the present result, Sirenko et al. (1996)

claimed that similar to the transverse bending modes the
circumferential modes also abides by the parabolic law
fpk2. Evidently, this is in contradiction with the physical
understanding explained above. Here we noticed that in
(Sirenko et al., 1996) MTs are assumed to be so thin that
the square of the thickness-to-radius ratio (h/r)2 is ignored.
As shown in Markus (1988), this in fact leads to the
membrane shell model which is unable to account for the
bending stiffness of MTs. The implicit negligence of the
bending stiffness gives fpk2 for the circumferential modes
with zero f at k-0.

4. Conclusions

An orthotropic elastic shell model is employed to study
the circumferential vibrations of MTs with large axial
wavelength (i.e., ko0.1). It is found that
(1)
 In circumferential vibration the circumferential bend-
ing is predominant and controlled by the circumfer-
ential bending stiffness that is dependent on the weak
lateral interaction between adjacent protofilaments and
the small ‘bridge thickness’ of MTs. Thus, the
excitation of the vibrations could lead to large
deformation on MT cross-sections and thus signifi-
cantly influence their mechanical performance and
structural integrity.
(2)
 With increasing axial wavelength, the frequency of the
circumferential modes approaches a nonzero asympto-
tic value that increases significantly with the growing
circumferential wave number n and decreasing radius
of MTs. Specifically, the dependence of the frequency
on the inverse of MT radius is almost linear and
becomes much stronger for the circumferential modes
with a larger n.
(3)
 The unique features of the circumferential modes,
captured by the present shell model, corrected the
previous misunderstanding due to an oversimplified
continuum model (Sirenko et al., 1996). Our study
points out that a parabolic dispersion law does not
apply to the circumferential modes.
It is worthwhile mentioning that the understanding
achieved above is qualitative because the mechanical
behavior of the microtubules has been assumed to be
linearly elastic in the modeling. To obtain a quantitative
prediction, the nonlinearity of the microtubule materials
should be taken into account in further studies.
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